ИЗУЧЕНИЕ ВЛИЯНИЯ МОДИФИКАЦИИ ВОЛЬФРАМОМ НА ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА ПЕРОВСКИТА СОСТАВА

\[\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta} \]

02.00.21 – химия твердого тела

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель:
доктор химических наук
Немудрый Александр Петрович

Новосибирск – 2016
Оглавление

Введение ... 4

Глава 1. Литературный обзор .. 10
 1.1. Структура перовскитов .. 10
 1.2. Кислородная нестехиометрия (δ) в перовскитах .. 11
 1.3. Кислородная подвижность в СКЭП оксидах .. 12
 1.3.1. Перовскиты с высокой кислородной подвижностью 16
 1.4. Перовскит $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta}$.. 18
 1.4.1. Методы синтеза .. 19
 1.4.2. Структурно-фазовая стабильность .. 21
 1.4.3. Методы определения кислородной нестехиометрии 23
 1.4.4. Равновесные данные по кислородной нестехиометрии 25
 1.4.5. Лимитирующая стадия кислородного транспорта 28
 1.4.6. Химическая стабильность .. 29
 1.4.7. Модификация функциональных свойств .. 30
 1.5. СКЭП оксиды как наноструктурированные сегнетоэластики 31
 1.6. Заключение к главе .. 36

Глава 2. Объекты и методы исследования ... 38
 2.1. Синтез образцов .. 38
 2.2. Определение абсолютного содержания кислорода ... 39
 2.3. Дифракционные исследования .. 41
 2.4. Термогравиметрический анализ ... 42
 2.5. Анализ поверхности ... 42
 2.6. Исследование процессов выделения кислорода .. 42
 2.7. Выскокотемпературные исследования кислородной проницаемости дисковых мембран .. 44
 2.8. Выскокотемпературные исследования кислородной проницаемости микроструктурных мембран ... 47

Глава 3. Синтез и характеристика образцов $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-x}\text{Fe}_{0.2}\text{W}_x\text{O}_{3-\delta}$ 48
 3.1. Синтез образцов .. 48
 3.2. Характеризация синтезированных образцов ... 48
 3.3. Допирование BSCF вольфрамом ... 52
 3.4. Модель выделения кислорода в проточном реакторе .. 54
3.5. Равновесная фазовая «δ – pO₂ – T» диаграмма BSCF................................. 56
3.6. Определение термодинамических параметров... 60
3.7. Заключение к главе ... 61

Глава 4. Кислородная проницаемость дисковых мембран 63
4.1. Постановка эксперимента ... 63
4.2. Модель кислородного транспорта в СКЭП оксидах 63
4.3. Изучение кислородной проницаемости BSCF и BSCFW2 дисковых мембран. 66
4.4. Анализ экспериментальных данных по кислородным потокам............ 68
4.5. Заключение к главе ... 70

Глава 5. Кислородная проницаемость микротрубчатых мембран......... 72
5.1. Модель кислородного транспорта через микротрубчатые мембраны 72
5.2. Постановка эксперимента ... 72
5.3. Кислородная проницаемость микротрубчатых BSCFW2 мембран............ 75
5.4. Определение лимитирующей стадии кислородных потоков 76
5.5. Заключение к главе ... 77

Глава 6. Прямой нагрев МТ мембран электрическим током............... 78
6.1. Методика эксперимента ... 79
6.2. Изучение кислородной проницаемости МТ мембран, нагретых электрическим током 80
6.3. Влияние связующего полимера на кислородные потоки через МТ мембраны........... 82
6.4. Сравнение эффективности нагрева МТ BSCFW2 мембран печь и электрическим током ... 84
6.5. Тест на стабильность кислородных потоков.. 86
6.6. Заключение к главе ... 87

Глава 7. In situ рентгенофазовый анализ поверхности МТ мембран в процессе их работы ... 89
7.1. Методика эксперимента ... 89
7.2. Изучение структурно-фазового состояния МТ BSCFW2 мембраны 90
7.3. Заключение к главе ... 94

Заключение.. 95

Выводы... 98

Список литературы ... 100
Введение

Перовскитоподобные оксиды со смешанной кислород–электронной проводимостью (СКЭП) находят применение в различных инновационных технологиях [1,2,3], например, сепарации кислорода из воздуха с помощью ион-транспортных мембран, которые легко интегрируются в высокотемпературные процессы: катализитической конверсии природного газа в синтез-газ [4]; окислительного пиролиза метана с получением ацетилена [5]; эффективного сжигания топлива с утилизацией углекислого газа [6], а также конверсии химической энергии топлива в электрическую энергию с помощью твердооксидных топливных элементов (ТОТЭ) [7]. Для вышеуказанных технологий, как правило, используются материалы, обладающие высокими транспортными характеристиками и стабильностью в условиях эксплуатации. Соединениями, обладающими такими характеристиками, являются нестехиометрические СКЭП оксиды со структурой кубического перовскита ABO_{3-δ}.

Несмотря на значительный прогресс в области материаловедения и технологии создания мембранных и электродных материалов на основе СКЭП оксидов, проблема снижения рабочей температуры, повышения кислородных потоков и увеличения стабильности до сих пор является актуальной.

Модификация СКЭП перовскитов путем замещения катионов в A- и B-подрешетках [8,9,10,11] позволяет получать новые материалы с необходимыми функциональными свойствами. В лаборатории химического материаловедения ИХТТМ СО РАН в начале 2000-х годов было впервые показано, что изоморфное замещение B-катионов СКЭП оксидов высокозарядными металлами B^{5+} (Nb, Ta) и B^{6+} (Mo, W) [12,13,14,15,16,17] сопровождается увеличением стабильности материала при сохранении высокой кислородной проницаемости. Новая стратегия допирования получила широкое признание и в настоящий момент активно используется другими исследователями [18,19,20] для разработки мембранных и электродных материалов.

В настоящей диссертационной работе в качестве исходного материала для замещения B-катионов высокозарядными металлами выбран состав Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} (BSCF), обладающий рекордными значениями кислородной проницаемости [21], наиболее низкими значениями удельного сопротивления и
высокими значения токов обмена [22] в ряду СКЭП оксидов со структурой перовскита. Однако, вместе с привлекательными для практического применения достоинствами, BSCF имеет ряд существенных недостатков: наличие фазового превращения кубический-гексагональный перовскит, ограниченную химическую и структурную стабильность в восстановительной атмосфере и среде, содержащей углекислый газ [23].

Целью настоящей работы являлась модификация перовскита Ba0.5Sr0.5Co0.8Fe0.2O3-δ путем частичного изоморфного замещения кобальта на вольфрам, сравнительное исследование физико-химических свойств материалов состава Ba0.5Sr0.5Co0.8-xWxFe0.2O3-δ (x=0–0.1), функциональных свойств и механизма кислородной проницаемости мембран состава Ba0.5Sr0.5Co0.78W0.02Fe0.2O3-δ.

Для достижения поставленной цели, были сформулированы следующие задачи:

1. Синтез и исследование материалов состава Ba0.5Sr0.5Co0.8-xWxFe0.2O3-δ (BSCFWx), полученных частичным замещением кобальта на вольфрам. Определение предела растворимости вольфрама в структуре кубического Ba0.5Sr0.5Co0.8Fe0.2O3-δ перовскита.

2. Исследование влияния допанта на физико-химические свойства Ba0.5Sr0.5Co0.8Fe0.2O3-δ перовскита. Изучение функциональных свойств полученных материалов в мембранах различной конфигурации (дисковых и микротрубчатых).

3. Разработка методологических подходов к изготовлению и исследованию функциональных свойств микротрубчатых мембран на основе СКЭП оксидов.

Научная новизна работы заключается в следующем:

1. Показано, что частичное изоморфное замещение ионов кобальта вольфрамом положительно влияет на структурно-фазовую стабильность Ba0.5Sr0.5Co0.8Fe0.2O3-δ перовскита, подавляя фазовый переход кубической фазы в гексагональную.
2. Получены непрерывные фазовые диаграммы перовскитов $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-\, x}\text{W}_x\text{Fe}_{0.2}\text{O}_{3-\, \delta}$ ($x=0$ и 0.02), демонстрирующие наличие двух фаз P^1 и P^2, разделенных двухфазной областью.

3. Впервые исследована кислородная проницаемость дисковых и микротрубчатых мембран состава $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\, \delta}$. Показано, что кислородные потоки через мембраны на основе допированного состава выше потоков для мембран из исходного вещества на ~ 15%.

4. Разработан новый способ прямого нагрева мембран электрическим током, позволяющий более чем в два раза увеличить производительность кислородпроницаемых мембран на основе СКЭП оксидов.

5. Впервые на основе in situ высокотемпературных дифракционных исследований поверхности функционирующих мембран показано, что лимитирующей стадией кислородной проницаемости является десорбция кислорода на проницаемой стороне мембраны.

Практическая значимость работы:

1. Получен новый мембранный материал состава $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\, \delta}$, который характеризуется структурной стабильностью и высокими кислородными потоками.

2. Отработан способ получения микротрубчатых керамических мембран методом обратной фазовой инверсии с использованием различных полимерных связующих.

3. Разработан новый способ прямого нагрева микротрубчатых мембран электрическим током, что позволяет увеличить их производительность более чем в два раза.

На защиту выносятся:

1. Синтез и результаты сравнительного исследования физико-химических свойств материалов состава $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-\, x}\text{W}_x\text{Fe}_{0.2}\text{O}_{3-\, \delta}$ ($x=0$, 0.02). Повышение структурной стабильности $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\, \delta}$ перовскита при частичном
изоморфном замещении ионов кобальта вольфрамом; подавление фазового перехода кубической фазы в гексагональную.

2. Увеличение значений и стабильности кислородных потоков для мембран состава Ba_{0.5}Sr_{0.5}Co_{0.78}W_{0.02}Fe_{0.2}O_{3-δ}.

3. Механизм кислородной проницаемости дисковых и микротрубчатых мембран состава Ba_{0.5}Sr_{0.5}Co_{0.78}W_{0.02}Fe_{0.2}O_{3-δ}. Для дисковых мембран кислородная проницаемость контролируется объемной диффузией оксид-ионов через материал мембраны. Для микротрубчатых мембран кислородная проницаемость контролируется кинетикой поверхностных стадий переноса кислорода.

4. Новый способ нагрева микротрубчатых мембран из оксидов со смешанной кислород-электронной проводимостью электрическим током, открывающий новые возможности как для фундаментальных, так и прикладных исследований.

Апробация работы. Результаты, изложенные в диссертационной работе, докладывались и обсуждались на научных семинарах ИХТТМ СО РАН, а также на различных всероссийских и международных конференциях: L и LI Международной научной студенческой конференции "Студент и научно-технический прогресс" (Новосибирск, 2012 и 2013, соответственно); 11th International Meeting “Fundamental problems of solid state ionic” (Chernogolovka, Russia, 2012); Международной конференции "Solid State Chemistry", SSC-13 (Bordeaux, 2013); Всероссийской конференции "Неорганические соединения и функциональные материалы" (Новосибирск, 2013); Международной конференции "Фундаментальные основы механохимической технологии", FBMT-2014 (Новосибирск, 2013); Международной конференции "International Symposium on the Reactivity of Solids", ISRS-18 (Санкт Петербург, 2014); Международной конференции "Sixteenth Annual Conference YUCOMAT 2014" (Herceg Novi, 2014); Всероссийской конференции с международным участием "Топливные элементы и энергоустановки на их основе" (Черноголовка, 2015); Русско-Японской конференции "Advanced Materials: Synthesis, Processing and Properties of Nanostructures – 2016" (Новосибирск, 2016).
Личный вклад автора. Все результаты, приведенные в диссертации, получены самим автором или при его непосредственном участии. Автором выполнены синтез образцов твердофазным методом в виде порошков, газоплотных дисковых и микротрубчатых мембран, их аттестация при помощи методов рентгенофазового анализа, сканирующей электронной микроскопии, элементного анализа и йодометрического титрования. Лично автором были поставлены эксперименты по изучению процессов кислородной проницаемости дисковых и микротрубчатых мембран, высокотемпературного выделения кислорода. Автор принимал участие при постановке in situ высокотемпературных дифракционных исследований. Обсуждение полученных результатов и написание научных статей проводилось совместно с научным руководителем и соавторами работ.

Публикации по теме диссертации. По материалам диссертации опубликовано 15 работ, в том числе, 4 статьи в рецензируемых изданиях и 11 тезисов докладов российских и международных конференций.

Структура и объем работы. Диссертационная работа состоит из введения, 7 глав, заключения, выводов, списка цитируемой литературы. Материал изложен на 110 страницах и содержит 59 рисунков, 4 таблицы и список литературы из 103 ссылок.

Диссертационная работа выполнена в Институте химии твердого тела и механохимии СО РАН (лаборатория химического материаловедения) при поддержке Российского фонда фундаментальных исследований (№13-03-00737, 12-03-31892, 14-29-04044, 14-03-31240), интеграционных программ Сибирского отделения РАН (проект №104).

Автор выражает глубокую благодарность своему научному руководителю д.х.н. Немудрому А. П. за руководство, постановку задачи и помощь в проведении экспериментальных работ и обсуждении полученных результатов, а также Старкову И. А. и Бычкову С. Ф. за неоценимую помощь на протяжении всей работы. Выражается благодарность Гайнутдинову И. И. за помощь в редактировании текста диссертационной работы. Отдельная благодарность Федотову В. В. за создание лабораторного прибора по нагреву микротрубчатых мембран.
Автор признателен сотрудникам лаборатории химического материаловедения ИХТТМ СО РАН Булиной Н. В., Савинской О. А., Беленькой И. В., Артимоновой Е. В. за помощь и поддержку.
Глава 1. Литературный обзор

1.1. Структура перовскитов

К группе перовскита относятся сложные оксиды, кристаллизующиеся в структурном типе перовскита, которые характеризуются общей формулой ABO₃.

В элементарной ячейке перовскита большеразмерные катионы A²⁺ расположены в углах (0 0 0), катионы B⁴⁺ – в центре куба (½ ½ ½) и анионы O²⁻ в центре граней (½ ½ 0, ½ 0 ½, 0 ½ ½) (рис. 1). Пространственная группа симметрии кубического перовскита – Pm̅3m.

В зависимости от способа упаковки слоев AО₃, различают два типа перовскитов: кубические (abcabc…) и гексагональные (abab…).

В полиэдрах структуры кубического перовскита можно представить в виде упаковки слоев AО₃ из катионов A²⁺ и оксид ионов O²⁻, где октаэдрические пустоты между слоями (частично или полностью) заполнены катионами B⁴⁺ (рис. 2а).

Структура гексагонального перовскита в полиэдрах представляет собой повторяющееся трехмерное сочленение BO₆ октаэдров через общие грани (рис. 2б).
Рис. 2. Структура (а) кубического (тип – SrFeO₃) и (б) гексагонального 2Н (тип - BaCoO₃) перовскитов в виде полиэдров.

В качестве А и В катионов могут выступать ионы металлов, удовлетворяющие условию общей электронейтральности соединения и определенным стерическим соотношениям. При оценке устойчивости структуры удобно использовать фактор толерантности (фактор Гольдшмидта), который рассчитывается по формуле:

$$t = \frac{R_A + R_O}{\sqrt{2}(R_B + R_O)}$$

где R_A, R_B, R_O – атомные радиусы катионов А, В и аниона кислорода O²⁻, соответственно. Структуре идеального кубического перовскита соответствует значение $t=1$; при $t>1$ возможны искажения до гексагональной симметрии; при $0.8 \leq t \leq 1$ возможны искажения до тетragональной, ромбоздрической или ромбической симметрии [24].

1.2. Кислородная нестехиометрия (δ) в перовскитах.

Поскольку переходные металлы В в структуре перовскита ABO₃, в зависимости от условий могут менять свою степень окисления, возможно отклонение от идеального состава и образование кислород-дефицитных структур:

$$ABO_3 \leftrightarrow ABO_{3-\delta} + \frac{\delta}{2}O_2$$

(1.2)
Необычные физико-химические свойства СКЭП оксидов связаны с их кислородной нестехиометрией (\(\delta\)), которая, являясь функцией температуры и парциального давления кислорода, может теоретически достигать 33% (\(\delta\) от 0 до 1) относительно идеального состава ABO₃.

Важную для исследования свойств СКЭП оксидов дают данные о зависимости кислородной нестехиометрии от парциального давления кислорода и температуры «\(\delta – pO₂ – T\)». Они необходимы для определения областей устойчивости фаз в системе СКЭП оксида; фазовых переходов в исследуемой области [25]; анализа дефектной структуры, влияющей как на ионную, так и на электронную проводимость СКЭП оксидов [26,27]; определения важных термодинамических параметров, таких как химический потенциал оксида, парциальная мольная энталпия и энтропия [28].

На данный момент, существует ряд методов, позволяющих получить зависимость «\(\delta – pO₂ – T\)». Наиболее широко используемыми являются: метод термогравиметрии [29,30,31,32,33] и кулонометрического титрования [34,35]. При использовании термогравиметрии, ввиду большого свободного объема ячейки и типа реактора (реактор идеального смещивания), возникают проблемы при создании газовых смесей с низким парциальным давлением кислорода, в случае кулонометрического титрования - возникают трудности при создании самой ячейки, поскольку для эксперимента необходима герметичная ячейка из оксида циркония, стабилизированного иттрием (YSZ), совмещающая свойства кислородного насоса и датчика. Из менее распространенных можно выделить также метод нейтронной дифракции, основанный на рассеянии нейтронов в твердых телах [36], и метод термопрограммируемой десорбции кислорода (ТПД-O₂) с применением YSZ датчика (запатентованная система OXYLYT™) [37,38].

1.3. Кислородная подвижность в СКЭП оксидах

Возможность получения чистого кислорода методом, основанным на применении кислородпроводящих мембран, в силу его преимуществ перед традиционными способами, привлекает внимание многих исследователей [39]. На исследования в данной области затрачивается значительное количество усилий, в рамках различных подходов создается множество вариантов специализированных установок.
Принципиальная схема таких установок практически неизменна и состоит из трех основных блоков: 1) системы подачи различных газовых смесей с регулируемой скоростью потока; 2) реактора с нагревательной системой и ячейкой (кварцевая, сапфировая) для образца; 3) кислородного датчика для количественной регистрации кислорода, проходящего через мембрану. В качестве системы подачи газов используется либо система расходомеров, либо смеситель газов. Устройство ячейки для образца должно обеспечивать: подвод/отвод газа и доступную для пользователя площадку для установки и герметизации образца. В качестве кислородного датчика обычно используют масс-спектрометр, газовый хроматограф или датчик кислорода на основе оксида циркония, стабилизированного иттрием.

Важную роль играет герметичность схемы, предотвращающая натекание посторонних газов в систему. Герметичность самой мембраны является ключевым фактором. Ее можно определить, как экпрессными методами (использование красителя, измерение давления по обе стороны мембраны при повышенном давлении), так и более тонкими, но и более ресурсоемкими методами, такими как использование кислородного датчика или гелиевого течеискателя. Для герметизации кислородпроницаемых мембран используют, как правило, стеклянные (марки AR, Pb-содержащие и т.п. [21]) или металлические (Au, Ag и т.п.[40]) кольца.

Используемые при исследовании кислородного транспорта ячейки и реакторы могут иметь различное расположение – они могут быть, как горизонтальными, так и вертикальными. Их конструкция определяется геометрией самой мембраны. На данный момент в основном используется 2 типа мембран – планарные и трубчатые. К планарным относятся газоплотные мембраны в форме дисков, панелей и др. К трубчатым – трубы с внутренним диаметром больше 5 мм, и микротрубы с внутренним диаметром ~1–2 мм, так называемые hollow fibers (англ.). Методики получения дисковых и микротрубчатых мембран будут описаны в главе «Объекты и методы исследования».

В последнее время для измерения кислородной проницаемости все чаще используют образцы именно трубчатого типа [41]. Благодаря специфике геометрии трубчатые мембраны показывают более высокие значения удельной кислородной
проницаемости и устойчивость к термическим шокам. Полученные позднее микротрубчатые (МТ) мембраны (hollow fibers) превосходят в данных испытаниях более массивные трубчатые мембраны [39,42]. Геометрический тип мембраны является фактором, наряду с химическим составом образца, определяющим величины кислородных потоков и механическую стабильность мембран.

Получаемые различными исследователями данные по кислородной проницаемости мембран определяются не только свойствами самой мембраны, но и зависят от ряда других факторов, часть из которых перечислена выше. Газоплотность, пористость и состояние поверхности зависят от метода получения мембран. Способ герметизации влияет на свободный объем реактора и площадь рабочей поверхности, что также может влиять на измеряемые характеристики. Способы подачи газа на мембрану влияют на концентрацию кислорода в приграничном слое, что существенно сказывается на адсорбции кислорода на поверхности мембраны и эффективности его выдувания со стороны низкого парциального давления. Все это во многом объясняет большой разброс литературных данных.

Поскольку, при изучении процесса транспорта кислорода через газоплотные мембраны, изготовленные из СКЭП оксидов, необходимо понимать суть происходящих при этом явлений.

Кислородная проницаемость газоплотных керамических мембран на основе нестехиометрических перовскитов со смешанной проводимостью контролируется двумя процессами: реакциями «газ-твердое тело» на поверхностях мембраны со стороны высокого и низкого парциального давления кислорода и твердофазной диффузией ионов кислорода через кристаллическую решетку нестехиометрического оксида [43,44]. Рассмотрим каждый процесс отдельно.

В литературе был описан механизм переноса газообразного кислорода в кристаллическую фазу оксида [44,45]. Согласно данному механизму суммарное квазихимическое уравнение реакции имеет следующий вид:

\[O_2^{2-} + 4e^- + 2V_o^{**} \leftrightarrow 2O_o^x \]

(1.3)
Эта, на первый взгляд, простая реакция состоит из нескольких последовательных стадий, каждая из которых может лимитировать транспорт кислорода:

1) \(\text{O}_2^{2-} + S_{\text{adс}} \leftrightarrow \text{O}_2(\text{adс}) \)

2) \(\text{O}_2(\text{adс}) + e^- \leftrightarrow \text{O}_2(\text{adс})^- \)

3) \(\text{O}_2(\text{adс})^- + e^- + S_{\text{adс}} \leftrightarrow \text{O}_2(\text{adс})^{2-} \) \hspace{1cm} (1.4)

4) \(\text{O}_2(\text{adс})^{2-} \leftrightarrow 2O_{\text{adс}}^- \)

5) \(O_{\text{adс}}^- + e^- \leftrightarrow O_{\text{adс}}^{2-} \)

6) \(O_{\text{adс}}^{2-} + V_O^{**} \leftrightarrow O_O^x + S_{\text{adс}} \)

После чего кислород в виде ионов диффундирует по решетке оксида на сторону более низкого парциального давления и выделяется в газовую фазу, проходя стадии (1.4) в обратном порядке.

При рассмотрении объемной диффузии кислорода через СКЭП оксид используется представление нестехиометрических оксидов в виде «твердых растворов». В соответствии с термодинамическим описанием процесса [46] частица i-го сорта в растворе стремится перейти из точки 1 с химическим потенциалом \(\mu_i^{(1)} \) в точку 2 с \(\mu_i^{(2)} \) (при \(\mu_i^{(1)} > \mu_i^{(2)} \)). При этом совершается работа:

\[A_i = F_i \Delta x = -\Delta \mu_i \] \hspace{1cm} (1.5)

которая соответствует изменению свободной энергии частицы, на которую действует сила:

\[F_i = -\frac{\Delta \mu_i}{\Delta x} \Rightarrow -\frac{\partial \mu_i}{\partial x} \] \hspace{1cm} (1.6)

в пределе \(\Delta x \Rightarrow 0 \)
Таким образом, движущей силой, вызывающей диффузионный перенос вещества, является градиент химического потенциала частиц. Квазихимическое уравнение реакции диффузионного переноса кислорода тривиально и выглядит следующим образом:

\[O_O^x + V_O \leftrightarrow V_O + O_O^x \] \hspace{1cm} (1.7)

Изучение транспорта кислорода через мембрану СКЭП оксида требует знания зависимости потока кислорода от химического потенциала (зависящего от парциального давления) газообразного кислорода и концентрации ионов кислорода в мембране (зависящей от кислородной нестехиометрии), а также многих других параметров. Решение задачи в общем виде затруднено и требует введения ряда упрощений, основанных на эмпирических фактах.

Например, для массивных мембранны планарного типа (толщиной \(L \geq 1 \text{ мм} \)) постулируется, что лимитирующей стадией является процесс диффузии кислорода через кристаллическую решетку. При этом для нестехиометрических перовскитов \(\text{ABO}_3 - \delta \) предполагается вакансийный механизм с постоянным коэффициентом диффузии, что оправдано, если концентрация вакансий достаточно мала и они неупорядочены.

Лимитирующая стадия транспорта кислорода в трубчатых мембранах во многом зависит от метода изготовления самих материалов. Так в микротрубчатых мембранах с тонким газоплотным слоем лимитирующей стадией транспорта кислорода является, как правило, кинетика поверхностных реакций.

В следующем разделе мы рассмотрим основные направления исследований кислородпроницаемых мембранных материалов, и наиболее востребованные в настоящее время составы оксидов.

1.3.1. Перовскиты с высокой кислородной подвижностью

Анализ литературы показывает, что исследования кислород-проницаемых материалов на основе нестехиометрических кобальтитов и ферритов щелочно-
редкоземельных металлов, обладающих смешанной кислород-электронной проводимостью, ведутся в следующих направлениях:

(1) разработка новых материалов, обеспечивающих высокие кислородные потоки через газоплотные мембраны и проявляющие химическую и механическую стабильность при высоких температурах в течение длительного времени;

(2) изучение факторов, определяющих величину кислородных потоков;

(3) разработка способов положительного влияния на эти факторы (нанесение катализаторов активации кислорода и конверсии углеводородов на поверхность мембран, снижение диффузионного торможения кислородных потоков за счет уменьшения толщины мембраны и др.) [47,48].

Наибольшие кислородные потоки имеют мембраны, изготовленные на основе кобальтитов. Однако, поскольку недодированный \(\text{SrCoO}_3 - \delta \) при температуре ~800°С имеет фазовый переход с образованием гексагональной модификации, что сопровождается падением кислородных потоков до нуля, большое внимание было уделено поиску оптимальных составов при допировании кобальтита стронцием. Так в работе [49] была изучена кислородная проницаемость системы \(\text{SrFe}_{1-x}\text{Co}_x\text{O}_3 - \delta \) \((x=0, 0.33, 0.67) \). В работе показано, что величины кислородных потоков увеличиваются с содержанием кобальта в \(\text{SrFe}_{1-x}\text{Co}_x\text{O}_3 - \delta \) и достигают значений 5.4 мл/мин*см² при 1000°С для \(x=0.67 \) (толщина мембраны = 0.5 мм). Энергии активации кислородного транспорта для \(\text{SrFe}_{1-x}\text{Co}_x\text{O}_3 - \delta \) слабо меняются с увеличением концентрации допанта и имеют значения 90–110 кДж/моль. Характеристическая толщина мембран состава \(\text{SrCo}_{1-x}\text{Fe}_x\text{O}_3 - \delta \) \((x=0, 0.33, 0.67) \) значительно растет с увеличением содержания кобальта \((L_c=2.0 \) и 0.7 мм для \(\text{SrCoO}_3 - \delta \) и \(\text{SrCo}_{0.67}\text{Fe}_{0.33}\text{O}_3 - \delta \), соответственно). Общепризнано, что в системе \(\text{SrFe}_{1-x}\text{Co}_x\text{O}_3 - \delta \) оптимальным составом является \(\text{SrCo}_{0.67}\text{Fe}_{0.33}\text{O}_3 - \delta \), который обеспечивает наиболее высокие потоки (до 5.69 мл/мин*см² при \(T=950°С \) и толщине мембраны \(L=1.5мм \)) [50]. Однако следует отметить, что существенным недостатком кобальтсодержащих материалов является химическая и механическая неустойчивость в рабочих условиях, имеющих место в каталитических мембранных реакторах. В процессе кислородного транспорта
происходит сегрегация оксида кобальта на поверхности, что приводит к разрушению материала мембраны [51,52].

Исследования стабильности мембранных материалов при низких парциальных давлениях кислорода, проведенные исследовательскими группами в Авеиро, Португалия (В. Хартон с сотрудниками) и Екатеринбурге (М. Патракеев, И. Леонидов и В. Кожевников), свидетельствуют, что ферриты, несмотря на более низкие значения кислородных потоков, обладают более высокой стабильностью [53,54,55,56].

В литературе большое внимание уделено попыткам увеличения кислородной проницаемости перовскитов на основе феррита и кобальтора стронция путем замещения в A- и B-подрешетках и определению лимитирующей стадии процесса кислородного транспорта. Выявление факторов, определяющих величину кислородных потоков, позволит разработать способы положительного влияния на эти факторы (нанесение пористых слоев и катализаторов активации кислорода и конверсии углеводородов на поверхность мембран, снижение диффузионного торможения кислородных потоков за счет уменьшения толщины мембраны и др.).

1.4. Перовскит \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3-\delta \)

В начале XXI века было показано, что частичное замещение стронция барием в перовските \(\text{SrCo}_{0.8}\text{Fe}_{0.2}\text{O}_3-\delta \) повышает устойчивость перовскитной структуры мембранных материала и кислородную проницаемость [21]. Считается, что это связано со стабилизацией барием высокой кислородной нестехиометрии \((\delta>0.5) \) [36]. В ходе исследований было установлено, что оптимальным с точки зрения стабильности и кислородной проницаемости является состав \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3-\delta \). На данный момент состав \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3-\delta \) обладает рекордной кислородной проницаемостью [21,57].

Помимо применения в качестве кислород-проницаемых мембран, BSCF также применяется в процессах парциального окисления метана в синтез-газ [58] и окисления аммиака [59]. В 2004 году BSCF был успешно применен в качестве катода в ТОТЭ [57]. Водородный топливный элемент с легированным оксидом церия, в качестве электролита, и BSCF катодом при 600\(^\circ\)C показывает высокую плотность мощности.
1010 мВ·см². Благодаря высокой активности кислородного транспорта и умеренной активности окисления углеводородов, BSCF может быть применен в качестве катодов в однокамерных топливных элементах, работающих на пропане [57] или метане [60].

Тем не менее при введении бария в материал мембраны возникает проблема очистки атмосферного воздуха от углекислого газа, в противном случае происходит образование BaCO₃ на поверхности мембраны и существенная деградация пропускаемых мембраной потоков [23]. Поскольку именно данный состав и является предметом изучения данной работы, его мы рассмотрим более подробно.

1.4.1. Методы синтеза

Существует три основных способа синтеза перовскита BSCF: твердофазный метод (solid-state reaction в англ. литературе), золь-гель метод (sol-gel process в англ. литературе) и метод горения растворов (solution combustion в англ. литературе).

Твердофазный метод [61]. Данный метод наиболее распространен среди исследователей благодаря своей простоте. Стехиометрические количества BaCO₃, SrCO₃, Co₃O₄ и Fe₂O₃ измельчают и гомогенизируют в высокоэнергетических мельницах (например, АГО-2 (Россия) или Пульверизетте 6 (Fritsht, Германия)) в растворителе (спирт, ацетон и тп). Гомогенную смесь порошков сушат и прокаливают при 900–1000°C в течение 6–10 ч на воздухе. Полученный таким образом BSCF готов для дальнейших исследований.

Золь-гель метод [61]. В данном методе, как правило, используют комбинированный ЭДТА-цитратный комплексообразователь. Нитраты металлов с требуемыми молярными соотношениями растворяют в деионизированной воде с получением прозрачных растворов, с последующим введением смешанного раствора ЭДТА и лимонной кислоты в качестве комплексообразующих агентов (молярное соотношение: ионы металлов (1) / ЭДТА (1) / лимонная кислота (2)). Для обеспечения полного комплексообразования, в раствор добавляют NH₃·H₂O до значения pH ~ 6. Раствор непрерывно перемешивают и упаривают при 90°C, получая прозрачный гель, который отжигают в печи при температуре 250°C в течение 5 ч с образованием твердого прекурсора. В дальнейшем проводят обжиг на воздухе при 900–1000°C в
течение 6–10 ч, с получением порошка BSCF, который измельчают непосредственно перед использованием.

Метод горения растворов [62]. Стептометрическое количество Ba(NO₃)₂, Sr(NO₃)₂, Co(NO₃)₂·6H2O, и Fe(NO₃)₃·9H₂O растворяют в деионизированной воде, с последующим медленным добавлением раствора глицина в качестве комплексообразующего агента, и топлива (молярное соотношение: ионы металлов (1)
/ глицин (1,2). Смесь нагревают при 90°C до получения вязкого раствора, которую переносят в предварительно нагретую до 250°C печь. Нагрев продолжают до возгорания смеси, полученный порошок обжигают при температуре 900–1000°C на воздухе в течение 6–10 ч и измельчают перед использованием.

Рис. 4. Сравнение удельной поверхности и OER активности BSCF перовскитов, синтезированных различными методами.

В работе [61] показано, что образцы BSCF синтезированные твердофазным методом демонстрируют наиболее высокую активность в процессах выделения кислорода (рис. 4) (OER process в англ. литературе, 4OH⁻ → O₂ + 2H₂O + 4e⁻), которая значительно превосходит таковые для BSCF оксидов, синтезированных методами горения раствора и золь-гель. В работе предполагают, что разница в активности связана
с изменением степени окисления катионов кобальта на поверхности. Все три образца BSCF показали сравнительно хорошую стабильность в катализе OER. Таким образом, среди различных методов синтеза, твердофазный способ является лучшим решением для промышленного производства больших объемов оксида BSCF с повышенной активностью.

1.4.2. Структурно-фазовая стабильность

![Diagram](image)

Рис. 5. Структура Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} [63].

Первые полученные результаты in situ рентгеновской дифракции указывали на то, что BSCF стабилен и сохраняет структуру кубического перовскита во всем диапазоне температур (от комнатной до практически температуры плавления) и давлений (от 1 атм до динамического вакуума в 10^{-6}) (Рис. 6).

Однако, 6 лет спустя было показано, что, действительно, при высоких температурах от 850ºC до 1100ºC, независимо от парциального давления кислорода, BSCF кристаллизуется в структуре кубического перовскита, но при температуре ниже 850ºC происходит его медленное разложение (с характерным временем порядка нескольких суток) с образованием фазы гексагонального перовскита [23,64,65,66]:

2Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ}^{(κ)} \rightarrow Ba_{0.5+κ}Sr_{0.5-κ}CoO_{3-δ}^{(κ)} + Ba_{0.5-κ}Sr_{0.5+κ}Co_{0.6}Fe_{0.4}O_{3-δ}^{(κ)} (1.8)

Гексагональная фаза по сравнению с кубической обладает более низкой ион-электронной проводимостью и с началом её образования кислородная проницаемость мембран постепенно уменьшается.
Рис. 6. Данные in situ высокотемпературной дифракции Ba0.5Sr0.5Co0.8Fe0.2O3-δ [36].

Процесс образования гексагонального перовскита растянут по времени (рис. 7) и ускорить его образование возможно при дальнейшем понижении температуры и увеличении парциального давления кислорода. Для восстановления структуры исходного кубического перовскита достаточно провести выдержку образца при высокой температуре (~900°C). Наличие данного фазового перехода ставит под сомнение возможность использования BSCF в промышленных процессах, в которых требуется высокая стабильность материала при средних температурах, однако, сохраняется возможность его использования в высокотемпературных процессах.

Рис. 7. Рентгенограммы образцов Ba0.5Sr0.5Co0.8Fe0.2O3-δ, выдержанных в токе чистого кислорода при температурах 800–850°C в течение 240 часов.
1.4.3. Методы определения кислородной нестехиометрии

Существует множество методов, позволяющих измерить зависимость кислородной нестехиометрии от температуры T и парциального давления кислорода pO_2. Большинство из этих методов способно с высокой точностью фиксировать относительные изменения в кислородной нестехиометрии $\Delta \delta$, однако для определения зависимости абсолютного значения $\delta (= \delta_0 + \Delta \delta)$ от T и pO_2 требуется знать содержание кислорода в оксиде в некоторых реперных точках. Наиболее удобно использовать в качестве репера точку, в которой содержание кислорода достигает максимума для данного оксида – 3.0. В этой точке на изотерме «$\delta – pO_2$» наблюдается перегиб, по которому определяют соответствующее давление кислорода для данной температуры. Однако, не все кислород-дефицитные оксиды обладают такой реперной точкой. Некоторые соединения могут обладать дефицитом кислорода даже в экстремально окислительных условиях (экспериментально доступных) или, наоборот, могут обладать избытком кислорода в восстановительных условиях близких к точке разложения оксида. Одним из таких соединений и является $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3-\delta$ (BSCF). Данный материал обладает наиболее высокими значениями кислородной нестехиометрии, которые известны на сегодняшний день для кубической структуры перовскита ABO_3. Кроме того, в отличие от родственного с ним соединения $\text{SrCo}_{0.8}\text{Fe}_{0.2}\text{O}_3-\delta$ (SCF); в нем не происходит образования фазы $\text{ABO}_{2.5}$ типа «браунмиллерит» (в виде горизонтальной полки на изотерме «$\delta – pO_2$» [67]). Отсутствие упорядочения в BSCF при $\delta=0.5$ положительно влияет на кислородный транспорт, но также означает, что при $\delta>0.5$ не существует удобной реперной точки.

Одним из методов определения абсолютной стехиометрии кислорода в оксидах является термогравиметрический анализ (ТГА). Используя ТГ метод производят полное восстановление оксида и по потерянной массе рассчитывают исходное содержание кислорода в образце. Однако, выражение "полное восстановление" по отношению к BSCF не совсем корректно, так как подразумевает превращение исследуемого оксида в смесь исходных металлов. Дело в том, что для восстановления катионов щелочноземельных металлов (Ba^{2+} и Sr^{2+}) до чистых металлов требуются чрезвычайно низкие парциальные давления кислорода. Например, парциальное давление кислорода необходимое для восстановления оксида BaO до Ba при $T=1000 ^\circ C$
равно $pO_2 \approx 8 \times 10^{-31}$ Па; что практически недостижимо даже при использовании буферных газовых смесей, таких как H_2/H_2O или CO/CO_2. Таким образом, как правило, катионы щелочноземельных металлов не восстанавливаются вовсе, и, следовательно, их оксиды и являются продуктами "полного восстановления". Реакция "полного восстановления" BSCF, например, в атмосфере H_2 может быть представлена в следующем виде:

$$(2-\delta)H_2 + Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta} \rightarrow 0.5BaO + 0.5SrO + 0.8Co + 0.2Fe + (2-\delta)H_2O \quad (1.9)$$

Для подтверждения того, что реакция восстановления прошла полностью, необходим рентгенофазовый анализ полученной смеси продуктов. Основным источником ошибок в данном методе является образование отличных от кислорода летучих соединений; это приводит к дополнительной потере массы, которую можно неправильно отнести к потере кислорода образца.

Другим подходом к определению абсолютного содержания кислорода в оксидах является использование методов аналитической химии. Путем определения степеней окисления катионов переходных металлов можно косвенно рассчитать содержание кислорода, при условии, что другие ионы сохраняют свои исходные состояния окисления. В основном это методы восстановительного или окислительного титрования, тип которых должен быть тщательно подобран в зависимости от анализируемого катиона. Для переходных металлов, таких как Co и Fe, обычно используют йодометрическое и цериметрическое титрование. Главным недостатком аналитических химических методов является необходимость растворения оксида в кислоте. Использование кислот, обладающих окислительными свойствами (HNO_3 или H_2SO_4), может привести к окислительно-восстановительной реакции между кислотой и оксидом, в результате чего возникают ошибки в расчетах. Кроме того, растворитель может координировать катионы металлов в более высокой степени окисления, чем ожидается, что также приводит к неправильному вычислению содержания кислорода.

Существует прямой метод определения абсолютного содержания кислорода методом нейтронной диффракции. Данный метод позволяет при помощи полнoproфильного анализа Ритвельда дифракционных рентгенограмм, полученных in situ при заданных pO_2 и T; и определить заселенность кислородных позиций, при
условий, что катионные подрешетки полностью заняты. Однако, метод не является универсальным, так как он чувствителен только к большим значениям кислородной нестехиометрии. Кроме того, заселенность позиций коррелирует с тепловыми факторами (факторы Дебая-Уоллера). Одновременное варьирование тепловых параметров и заселенности позиций может привести, к ошибкам в оценке заселенности и, как следствие – определении кислородной нестехиометрии.

С развитием экспериментальной техники получил распространение метод кулонометрического титрования. В этом методе кислород, выделяющийся при нагреве из образца, откачивается при помощи электрохимической ячейки с кислород-проводящим электролитом. При подаче напряжения на ячейку электролит выступает в роли кислородного насоса, а количество прошедшего через него кислорода может быть прецизионно вычислено с помощью измерения тока через ячейку. Более подробное описание методики приведено в работе [68]. Как правило, данный метод применяется в тех случаях, когда значение $\Delta\delta$ слишком мало для его определения с помощью других методов. Недостатком метода, в случае исследования оксида BSCF (для которого $\Delta\delta$ велико), является большое количество кислорода, которое необходимо откачать из камеры, что требует очень большого времени для проведения эксперимента (порядка нескольких дней или даже недель).

1.4.4. Равновесные данные по кислородной нестехиометрии

В работе [69] был проведен подробный анализ литературных данных для BSCF по зависимости кислородной нестехиометрии от температуры и парциального давления кислорода. Анализ показал значительное расхождение кислородной нестехиометрии (δ) при фиксированном pO_2 и T не только между данными, полученными различными методами, но и между данными полученными одинаковым способом (рис. 8). Это наиболее видно из сравнения данных авторов Bucher и др., Wang и др., Svarcova и др., которые для определения реперных точек использовали метод термогравиметрического анализа.

Методики аналитической химии, используемые авторами Zeng и др., Kriegel и др. так же дают разные результаты. Наиболее важным моментом в проведении таких экспериментов является необходимость резкого охлаждения образца (с исследуемой
температуры до комнатной) с целью «заморозки» кислородной стехиометрии. Поскольку BSCF обладает чрезвычайно высокой скоростью кислородного обмена, то весьма сомнительно, что какие-либо процедуры закалки могут привести к «заморозке» кислородной стехиометрии оксида.

McIntosh и др. использовали метод in situ дифракции нейтронов и определяли каждую рентгенограмму независимо для каждой \((T, pO_2)\) точки. Несмотря на то, что метод не нуждается в определении реперной точки для калибровки данных по нестехиометрии, удивительно, что полученные значения \(\delta\) значительно выше, чем значения, полученные любым другим способом. В данном случае источником ошибок может быть недооценка заселенности позиций [70,71].

Рис. 8. Сравнение литературных данных по зависимости кислородной нестехиометрии от температуры и парциального давления кислорода. Различные символы обозначают различных авторов, одинаковые цвета обозначают одинаковые температуры °C (красный 25; оранжевый 600; желтый 700; зеленый 800; голубой 850; синий 900; фиолетовый 950; малиновый 1000). Реперные точки для каждой работы помечены звездой.

Помимо экспериментальных сложностей существует проблема, которая связана со свойствами самого материала и не была принята во внимание в литературе, а именно вышеупомянутое разложение кубической фазы BSCF (при \(T<850^\circ C\)) в гексагональную и кубическую перовскитные фазы, которые существенно различаются по катионному
и кислородному составу. Несмотря на то, что заметное разложения BSCF происходит в течении нескольких суток, времена прихода в равновесие с \(pO_2 \) и \(T \), используемые в большинстве исследований, могут способствовать образованию ощутимых количеств гексагональной фазы с привнесением последующих ошибок в значения \(\delta \).

Рис. 9. (a) Результаты термогравиметрического анализа (\(pO_2 = 0,2 \text{ атм} \)). (b) Зависимость \(\delta - pO_2 - T \), полученная методом кулонометрического титрования. Кружками обозначены реперные точки, полученные методом термогравиметрии. Видно, что между температурами 1073 К и 823 К присутствует изменение массы, даже после достижения обозначенной температуры. Медленное изменение массы объясняется разложением кубической фазы.
В работе [69] на примере BSCF перовскита показано, что определение абсолютных значений стехиометрии кислорода не является тривиальной задачей, особенно, при отсутствии реперных точек. В работе Mueller с соавт. проведено определение достоверных равновесных данных по кислородной нестехиометрии с учетом всех вышеуказанных проблем. Для этих целей было использовано два метода: кулонометрическое титрование и термогравиметрия. Кулонометрические измерения вплоть до «полного восстановления» позволили определить реперные точки δ. С учетом эффекта разложения BSCF, был проведен ряд нестандартных ТГ экспериментов и определена зависимость нижнего предела температуры стабильности кубической фазы от парциального давления кислорода (рис. 9а).

1.4.5. Лимитирующая стадия кислородного транспорта

Как было показано в гл. 1.3, исследование кислородной проницаемости нестехиометрических СКЭП оксидов начинают с анализа зависимости кислородного потока через оксид от парциального давления кислорода и температуры. Линеаризация экспериментальных данных в логарифмических или в степенных координатах позволяет выделить температурную составляющую и определить энергию активации кислородного транспорта. Сравнение данных для плотных (~95%) мембран различной толщины позволяет оценить вклад диффузии в лимитирующую стадию кислородного транспорта. Для оценок удобно использовать характеристическую толщину [72] $L_c = D_i/k_{iO}$, где D_i – коэффициент диффузии ионов кислорода; k_{iO} – коэффициент обмена поверхности с газовой фазой.

Для оксида BSCF $L_c \approx 500–700$ мкм [40,73] при $T=600–900^\circ$C, соответственно. При толщине газоплотного слоя мембраны $L<L_c$, полученную из эксперимента энергию активации относят к поверхностным стадиям переноса кислорода, в случае $L>L_c$ – к процессу объемной диффузии кислорода. Поскольку толщина газоплотного слоя микротрубчатых мембран не превышает 50 мкм, что значительно ниже характеристической толщины BSCF, лимитирующей стадией в МТ BSCF мембранах, как правило, является кинетика обмена на поверхности.
1.4.6. Химическая стабильность

Как было показано ранее в гл. 1.4, BSCF взаимодействует с CO₂, вследствие чего происходит «отравление» поверхности мембран из-за образования устойчивых карбонатов бария и стронция. Тем не менее, известно, что влияние CO₂ наиболее сильно проявляется лишь при температурах ниже 850 °C. Для объяснения данной причины рассмотрим результаты, приведенные в работе [74].

Рис. 10. Диаграмма Эллингема разложения карбонатов при различных парциальных давлениях CO₂ [74]. Пунктирные линии представляют собой стандартные свободные энталпии для CO₂ при различных равновесных парциальных давлениях. \(P^0_{\text{CO}_2} = 101,3 \) кПа относится к стандартным условиям.
Из диаграммы Эллингема (рис. 10) следует, что разложение карбонатов происходит при: FeCO$_3$$>$27°C, SrCO$_3$$>$722°C и BaCO$_3$$>$895°C. Данная диаграмма объясняет сродство бария к CO$_2$, но также позволяет объяснить высокую химическую стабильность состава BSCF при температурах выше 900°C.

1.4.7. Модификация функциональных свойств

С момента публикации первых работ, посвященных структурно-фазовой нестабильности BSCF оксида, модификация данного состава является актуальной задачей. На данный момент известно два подхода, способствующих стабилизации кубической структуры BSCF при сохранении его кислородных потоков.

Первый подход был сформулирован и апробирован Немудрым с соавт. в начале 2000-х. Было показано, что введение высокозарядных допантов Nb/Ta(V) и Mo/W(VI) в структуру нестехиометрических перовскитов $A_{1-x}Sr_xCo_{1-y}Fe_yO_{3-δ}$ позволяет регулировать их функциональные свойства. В данном случае, предполагается, что стабилизация кубической фазы происходит благодаря тому, что в объеме твердого раствора $A_{1-x}Sr_xCo_{1-y}Fe_yO_{3-δ}$ происходит образование равномерно распределенных стехиометричных фаз двойного перовскита $(A_2BM^{VI}O_6)$, которые в виде структурно-поддерживающих «колонн» стабилизируют структуру соединения. Следует отметить, что введение «кислых» катионов (Nb$^{5+}$, Mo$^{6+}$) повышает также химическую стабильность мембран в среде, содержащей CO$_2$, что является необходимым требованием для применения таких мембран в КМР. Данный подход нашел широкое применение и используется исследователями для разработки более совершенных мембранных и электродных материалов [12,13,14,16,75,76].

Недавно Yang с соавт. был описан другой подход к стабилизации кубической структуры BSCF, а точнее, к подавлению образования гексагональной фазы. В данной работе экспериментально описан механизм подавления образования гексагональной фазы в плотных дисковых BSCF мембранах. Показано, что образование гексагональной фазы происходит на поверхности мембраны по границам зерен. Введение 3% нерастворимого (менее 0,1%) в кубической структуре перовскита допанта Ce$^{4+}$ приводит к образованию наночастиц состава BaCeO$_3$ по границам зерен, которые в качестве «барьеров» подавляют образование дополнительных фаз. Благодаря
высокой ионной проводимости оксида церия (IV) транспортные свойства материала сохраняются. Данный подход позволил стабилизировать кислородные потоки дисковых BSCF мембран при \(T=550–650^\circ C \) [77]. Результаты исследования кислородной проницаемости при более высоких температурах не были приведены. Необходимо отметить, что при \(T>700^\circ C \) происходит восстановление церия \(\text{Ce}^{4+}\rightarrow\text{Ce}^{3+} \), что может повлиять на микроструктуру и транспортные характеристики мембраны. Эффективность данного подхода показана для BSCF только в низкотемпературной области и требует дальнейшего изучения.

Отличные от описанных выше подходы, такие как: нанесение металлического катализатора, введение растворимых низкозарядных допантов (\(Y^{3+} \), \(\text{Zr}^{4+} \) и т.п.) позволяют увеличить кислородные потоки BSCF мембран (табл. 1), однако, структурно-фазовая и химическая стабильность материалов не достигается.

Таблица 1. Зависимость потоков кислорода мембран от типа модификации.

<table>
<thead>
<tr>
<th>Состав</th>
<th>Толщина мембраны, мм</th>
<th>Давление кислорода (pO_{2,1}), атм.</th>
<th>Поток кислорода, мл/мин*см(^2)</th>
<th>Лит. данные</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCF (для сравнения)</td>
<td>1,5</td>
<td>0,2</td>
<td>1,57</td>
<td>[21,78]</td>
</tr>
<tr>
<td>BSCF + 2.5% Y</td>
<td>1,2</td>
<td>1</td>
<td>2,51</td>
<td>[79]</td>
</tr>
<tr>
<td>BSCF + Pt (модификация поверхности)</td>
<td>1,4</td>
<td>1</td>
<td>2,04</td>
<td>[80]</td>
</tr>
<tr>
<td>BSCF + Ag (модификация поверхности)</td>
<td>1,4</td>
<td>1</td>
<td>3,14</td>
<td>[80]</td>
</tr>
<tr>
<td>BSCF + 3% Zr</td>
<td>0,5</td>
<td>1</td>
<td>1,60</td>
<td>[81]</td>
</tr>
</tbody>
</table>

1.5. СКЭП оксиды как наноструктурированные сегнетоэластики

В лаборатории химического материаловедения ИХТТМ СО РАН ранее было показано, что введение высокозарядных допантов Nb/Ta(V) и Mo/W(VI) в структуру нестехиометрических перовскитов \(\text{A}_{1-x}\text{Sr}_x\text{Co}_{1-y}\text{Fe}_y\text{O}_{3-\delta} \) является перспективной стратегией по регулированию функциональных свойств этих материалов [82].

С целью выявления механизма влияния допирования высокозарядными катионами на функциональные свойства СКЭП было обращено внимание на то, что СКЭП оксиды по формальным признакам (симметрийный критерий) являются
сегнетоэластиками [83,84], а высокозарядные B⁵⁺ (Nb, Ta) и B⁶⁺ (Mo, W) являются сегнетоактивными катионами [24,85]. Для оксида SrCo₀,₈Fe₀,₂O₂,₅ фазовый переход «перовскит (P) – браунмиллерит (BM)» является сегнетоэластичным; изменение точечной симметрии сопровождается образованием 90° двойников субмикронных размеров, которые могут быть переориентированы под действием механической нагрузки [86,87]. Увеличение композиционного беспорядка в результате изменения кислородной стехиометрии или допирования высокозарядными катионами в SrCo₀,₈Fe₀,₂O₂,₅₋ₓ (SCF) сопровождается явлениями, схожими с явлениями, наблюдаемыми в сегнетоэлектрических релаксорах (с точки зрения их микроструктурных особенностей): а именно, образование наноразмерных браунмиллеритных доменов в низкотемпературной (сегнетоэластичной) фазе.

В работе [82] было проведено сравнение микроструктурных особенностей для родственных классов сегнетоэлектриков и сегнетоэластиков. В отсутствие композиционного беспорядка для сегнетоэлектриков характерно наличие резкого фазового перехода и образование доменов микронного размера в низкотемпературной сегнетоэлектрической фазе. Внесение композиционного беспорядка путем изоморфного замещения в катионной подрешетке оксидов приводит к релаксорному состоянию:

с точки зрения микроструктурных особенностей оно характеризуется образованием нанодоменной текстуры, которая образуется за счет диффузных фазовых переходов;

с точки зрения их диэлектрических свойств это приводит к релаксационному характеру температурной зависимости диэлектрической проницаемости, связанному с термической флуктуацией спонтанной поляризации в полярных нанообластях (ПНО).

Дальнейшее увеличение композиционного беспорядка сопровождается образованием стеклоподобного состояния, в котором ПНО уменьшаются до 3–5 нм, при сохранении кажущейся высокой симметрии на макроскопическом уровне [88]. Таким образом, термин релаксор отражает как поляризационные, так и микроскопические особенности ферроичных материалов. В [87] было предложено для СКЭП сегнетоэластиков с высокой степенью композиционного беспорядка, в которых
фазовый переход размыт, а низкотемпературная фаза имеет наноразмерную текстуру, использовать термин “сегнетоэластический релаксор” для отражения его микроструктурного подобия с сегнетоэлектрическими релаксорами. Очевидно, что схожесть в характере фазовых превращений и микроструктурных особенностей низкотемпературных фаз для сегнетоэлектриков и сегнетоэластиков (рис. 11) связана с единой природой сегнетоэлектричества и сегнетоэластичности, основанной на искажении кристаллической решетки.

Рис. 11. Подобие в характере фазовых превращений и микроструктурных особенностей низкотемпературных фаз для сегнетоэлектриков и сегнетоэластиков.

Для описания СКЭП сегнетоэластиков в работе [82] было предложено использовать представление о строении сегнетоэлектриков. Как известно, для сегнетоэлектриков, при охлаждении высокотемпературной пара-фазы до, так называемой, температуры Бернса ТB (T_B>T_C) флуктуационно возникают динамические ПНО (такое состояние принято называть эргодическим состоянием, другими словами – динамическое наноструктурирование), которые при дальнейшем понижении температуры (до температуры замерзания T_F) растут в размерах и замораживаются в статические домены (статическое наноструктурирование). Наличие композиционного беспорядка приводит к тому, что образование доменов может быть связано с флуктуацией состава. В этом случае динамическое наноструктурирование сопровождается образованием химических нанообластей (XHO), а размеры
статических доменов зависят от степени композиционного беспорядка. Таким образом, статические ПНО/ХНО, которые могут быть зарегистрированы микроскопически, обязаны своим происхождением динамическим ПНО/ХНО, которые существуют при температурах выше T_c фазового перехода и регистрируются с помощью методов рентгеновского и нейтронного диффузного рассеяния и с помощью различных оптических методик [88,89].

Рис. 12. Зависимость размера двойников от концентрации допанта. Микрофотографии SCF, допированного танталом: (а) ламеллярные двойники (160–200 нм) $\text{SrCo}_{0.8}\text{Fe}_{0.2}\text{O}_{2.48}$; (б) 90-градусные двойники (10–20 нм) $\text{SrCo}_{0.73}\text{Fe}_{0.2}\text{Ta}_{0.07}\text{O}_{2.58}$; (в) стеклоподобное состояние в $\text{SrCo}_{0.7}\text{Fe}_{0.2}\text{Ta}_{0.1}\text{O}_{2.6}$ с двойниками 3–5 нм [82].

В работе [82] для сегнетоэластических фаз $\text{SrCo}_{0.8-x}\text{Fe}_{0.2}\text{M}_{x}\text{O}_{2.5+y}$ ($\text{M} = \text{Nb}, \text{Ta}$) показано наличие статического наноструктурирования (образования браунмиллеритных доменов), масштаб которого связан со степенью композиционного беспорядка, вносимого частичным замещением кобальта (III) высоковалентными ионами Nb/Ta(V) (рис. 12). Это позволяет по аналогии с сегнетоэлектриками предполагать наличие динамического наноструктурирования при температурах выше температуры P–BM фазового перехода, что согласуется с данными высокотемпературной Мессбауэровской спектроскопии.

В рамках данного подхода BSCF является типичным сегнетоэластическим релаксором, в котором увеличение композиционного беспорядка в кристаллической решетке, вызванного замещением ионов Sr^{2+} (1,40 Å) ионами Ba^{2+} с большими ионными радиусами (1,56 Å) приводит к высокой кислородной проводимости/проницаемости. Композиционный беспорядок размывает P–BM фазовый переход и расширяет область
существования эргодического состояния: согласно дифракционным данным BSCF в широком интервале температур характеризуется структурой кубического перовскита [70], при том, что данные Мессбауэровской спектроскопии для кубического перовскита \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{2.5+y} \) (\(y \to 0 \)) показывают наличие в спектрах двух магнитоупорядоченных компонент, характерных для структуры браунмиллерита (рис. 13). Согласно структурным данным, представленным в работе [82], можно предполагать наличие в BSCF замороженного стеклоподобного состояния на основе структуры браунмиллерита.

![Рис. 13. Мессбауэровский спектр кислород-дефицитного соединения \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{2.5+y} \), полученного при комнатной температуре. Красная линия соответствует \(\text{Fe}^{3+} \)-компоненте в октаэдрическом окружении, синяя линия соответствует \(\text{Fe}^{3+} \)-компоненте в тетраэдрическом окружении, зеленая линия соответствует \(\text{Fe}^{3+} \)-парамагнитной компоненте в пентаэдрическом окружении (~3%). Наличие данной компоненты в спектре вероятно связано с наличием небольшого количества фазы перовскита [82].](image)

Таким образом, на основании ранее развитых представлений можно полагать, что внесение в BSCF дополнительного зарядового беспорядка путем частичного замещения ионов кобальта (III/IV) на вольфрам (VI) позволит подавить/размыть фазовый переход в гексагональную модификацию и стабилизировать стеклообразное (кубическое) состояние.
1.6. Заключение к главе

На наш взгляд, задачу улучшения функциональных свойств состава BSCF и его стабильности долгое время не удавалось решить из-за отсутствия теоретических представлений о механизме влияния допантов на свойства СКЭП оксидов. В лаборатории химического материаловедения ИХТТМ СО РАН ранее было показано, что введение высокозарядных допантов Nb/Ta(V) и Mo/W(VI) в структуру нестехиометрических перовскитов ACo$_{1-x}$Fe$_x$O$_{3-δ}$ является перспективной стратегией по регулированию функциональных свойств этих материалов [90], поскольку перовскиты на основе Sr(Fe/Co)O$_{3-δ}$ являются сегнетоэластиками, а Nb/Ta(V) и Mo/W(VI) являются сегнетоактивными катионами. Подход к СКЭП оксидам как сегнетоэластикам позволяет воспользоваться моделями и представлениями о динамическом и статическом наноструктурировании (эргодическом и неэргодическом состояниях), размытых фазовых переходах, динамике кристаллической решетки и т.д., развитыми для родственного класса соединений – сегнетоэлектриков. Это открывает новые возможности для более глубокого понимания природы их высокой кислородной подвижности, как при высоких, так и при низких температурах, целенаправленного модифицирования транспортных и термомеханических свойств практически важных материалов.

В данной работе для модификации BSCF перовскита в качестве высокозарядного сегнетоактивного допанта был выбран вольфрам (VI), который приводит к композиционному и зарядовому беспорядку в структуре перовскита, что может подавить нежелательный фазовый переход в гексагональную модификацию, а также, благодаря кислотным свойствам его оксида WO$_3$, может положительно повлиять на стабильность материала в атмосфере, содержащей углекислый газ CO$_2$.

Таким образом, **целью настоящей работы** являлась модификация перовскита Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-δ}$ путем частичного изоморфного замещения кобальта на вольфрам, сравнительное исследование физико-химических свойств материалов состава Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8-x}$W$_x$Fe$_{0.2}$O$_{3-δ}$ (x=0–0.1), функциональных свойств и механизма кислородной проницаемости мембран состава Ba$_{0.5}$Sr$_{0.5}$Co$_{0.78}$W$_{0.02}$Fe$_{0.2}$O$_{3-δ}$.

Для достижения поставленной цели, были сформулированы следующие задачи:
1. Синтез и исследование материалов состава $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-x}\text{W}_x\text{Fe}_{0.2}\text{O}_{3-\delta}$ (BSCFW$_x$), полученных частичным замещением кобальта на вольфрам. Определение предела растворимости вольфрама в структуре кубического BSCF перовскита.

2. Исследование влияния допанта на физико-химические свойства BSCF перовскита. Изучение функциональных свойств полученных материалов в мембранах различной конфигурации (дисковых и микротрубчатых).

3. Разработка методологических подходов к изготовлению и исследованию функциональных свойств микротрубчатых мембран на основе СКЭП оксидов.
Глава 2. Объекты и методы исследования

2.1. Синтез образцов

Исследуемые соединения были синтезированы твердофазным методом согласно уравнению реакции:

\[0.5\text{Ba(NO}_3\text{)}_2 + 0.5\text{SrCO}_3 + (0.8-x)/3\text{Co}_3\text{O}_4 +0.1\text{Fe}_2\text{O}_3 + x\text{WO}_3 \rightarrow \]

\[\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-x}\text{W}_{x}\text{Fe}_{0.2}\text{O}_3-\delta + 0.5\text{CO}_2 + \text{NO}_2 \] (2.1)

Стехиометрическую смесь реагентов перемешивали в планетарной шаровой мельнице АГО-2 с ускорением мелющих тел 20g в течение 30 сек с добавлением этилового спирта (1 мл на грамм смеси) для получения гомогенной смеси. Высушенную смесь прокаливали (кальцинировали) при 900°C в течение 7 часов для удаления окислов азота и углерода, затем, предварительно измельчив в ступке, снова гомогенизировали в мельнице.

Для изучения процессов кислородной проницаемости дисковых мембран образцы спекали в виде газоплотных дисков (\(T=1100–1200°C\), \(V_{\text{нагрев}}=250º/\text{час,} \ V_{\text{охлаждения}}=150º/\text{час,} \) плотность не менее 95% от теоретической; отсутствие открытой пористости) различной толщины, обладающих следующими параметрами: диаметр ≈ 15,5 мм, толщина ≈ 1,5±3,5 мм.

Для определения равновесной фазовой «\(\delta – p\text{O}_2 – T\)» диаграммы использовали порошки спеченного перовскита фракции 56–63 микрон, для получения которых использовали соответствующие сита.

Для получения MT мембран методом фазовой инверсии [91] в качестве прекурсора использовали порошок, полученный после кальцинирования при 900°C и размолотый на валковой мельнице при скорости 2 об/сек в течение 48 часов. Полученный таким образом дисперсный порошок смешивали с растворителем и пластификатором в различных соотношениях, в зависимости от типа связи растворитель/пластификатор (для связи N-метилпирролидон/полисульфон (НМП/ПС) использовали соотношение 12:4:1, для связи ДМСО/ацетилцеллюлоза (ДМСО/АЦ) – 10:5:1). Полимерную пасту гомогенизировали в стальных барабанах на
валковой мельнице с одним крупным мелющим телом в течение 24 часов. Однородную смесь отделяли от мелющего тела и подвергали нескольким циклам дегазации. Далее на специально разработанной фильере (рис. 14) выдавливал микротрубки заданного состава.

При загрузке 30 грамм порошка перовскита получали в среднем 20 микротрубчатых мембран длиною в 18–20 см.

Режим спекания заготовок МТ мембран отличается от дисковых. Микротрубки дополнительно выдерживали при 600ºC в течение двух часов для предварительного удаления органического связующего.

2.2. Определение абсолютного содержания кислорода

Исходное содержание кислорода (при Т=25ºC) (3-δ0) в медленно охлажденных образцах определяли методом йодометрического титрования. Для этого готовили рабочий раствор тиосульфата натрия растворением стандарт-титра в одном литре кипяченной дистиллированной воды. Таким образом получали ~0,02N раствор
тиосульфата натрия. Стандартизация приготовленного раствора тиосульфата натрия проводили с помощью стандарта дихромата калия.

Затем растворяли 1,5 г КI в 50 мл 0,7N раствора HCl в токе аргона. Далее в раствор добавляли определенную навеску перовскита (30–40 мг) и герметично закрывали колбу.

Содержание кислорода в \(\text{ACo}_{1-x}\text{Fe}_x\text{O}_{3-\delta}\) нестехиометрическом перовските определяется степенью окисления катионов железа и кобальта. В результате окислительно-восстановительной реакции, \((\text{Fe/Co})^{3+/4+}\) переходят в \((\text{Fe/Co})^{2+}\). Таким образом, независимо от соотношения кобальта и железа, суммарно протекающую реакцию можно представить в следующем виде:

\[
\begin{align*}
\text{A}^{2+} + \text{B}^{4+} \cdot \text{B}^{3+} + x \text{O}_{2,5+x/2} + (1+x)\Gamma^- + (5+x)\text{H}^+ & \rightarrow \\
\text{A}^{2+} + \text{B}^{2+} + (1+x)/2\text{I}_2 + (5+x)/2\text{H}_2\text{O} & (2.2)
\end{align*}
\]

Образующийся в результате реакции молекулярный йод титровали свежеприготовленным стандартным раствором тиосульфата натрия до приобретения раствором лимонно-желтого цвета. Затем в качестве индикатора добавляли 1% раствор крахмала, что придавало фиолетовую окраску раствору. Титрование продолжали до точки эквивалентности, соответствующей полному обесцвечиванию. Протекающая окислительно-восстановительная реакция может быть описана уравнением 2.3:

\[
(1+x)/2\text{I}_2 + (1+x)\text{S}_2\text{O}_3^{2-} \rightarrow (1+x)\Gamma^- + (1+x)/2\text{S}_4\text{O}_6^{2-} \quad (2.3)
\]

Объем затраченного на титрование раствора тиосульфата пропорционален количеству выделившегося в ходе реакции йода и содержанию катионов металлов в анализируемой пробе:

\[
\text{NV} = (1 + x) \frac{m_{пробы}}{M_{\text{A}^{2+}\text{B}^{3+}\text{O}_{2.5}}} + 8x \quad (2.4)
\]

Поскольку:

\[
3-\delta = 2.5 + x/2 \quad (2.5)
\]
Решением системы уравнений 2.4 и 2.5 будет:

\[3 - \delta = 2.5 + \frac{NVM_{A^{2+}B^{3+}O_{2.5}} - m_{пробы}}{m_{пробы} - 8NV} \] (2.6)

где \(m_{пробы} \) – масса навески, \(V \) – объем титранта, \(N \) – нормальная концентрация титранта, \(M(A^{2+}B^{3+}O_{2.5}) \) – молярная масса вещества при \(x=0 \).

В случае, если в составе перовскита присутствуют катионы \(M \), которые не переходят в раствор \((A^{2+}B^{3+}_{1-x}B^{4+}_{x}M_xO_{2.5+3/2x+0.5z})\):

\[3 - \delta = 2.5 + \frac{NVM_{A^{2+}B^{3+}M_xO_{2.5+3/2x+0.5z}} - (1-x)m_{пробы}}{m_{пробы} - 8NV} \] (2.7)

2.3. Дифракционные исследования

Для изучения фазового состава и структуры образцов использовали метод порошковой рентгеновской дифракции. Съемку проводили на дифрактометре Bruker D8 Advance (медное излучение), с использованием позиционно-чувствительного высокоскоростного детектора LynxEye (угол захвата 3°) в геометрии Брегга-Брентано.

Для проведения \textit{in situ} высокотемпературных рентгеновских исследований применяли рентгеновскую камеру HTK-16 (Anton Paar, Австрия). Эксперименты проводили на воздухе и в динамическом вакууме \((pO_2 \sim 10^{-6} \text{ атм})\). Исследованные температуры: 25, 100–1000°C с шагом 100°C. Скорость нагрева 60°/мин. Измерения проводили в диапазоне \(2\theta=10–70°\) с шагом 0,05 и временем накопления 5 сек.

При исследовании высокотемпературного фазового состояния поверхности МТ мембран, нагретых при помощи тока, дифрактометр был дополнительно оборудован зеркалом Гёбеля (Bruker, Германия) для создания геометрии «параллельный луч», позволяющий проводить количественный учет кривизны образца, а также смещения дифракционных пиков, которые возникают при отклонении микротрубок от оси гoniометра в процессе их нагрева.
Уточнение структуры исследованных соединений проводили с помощью полнoproфильного анализа по методу Ритвельда с использованием ПО «Topas 4.2».

2.4. Термогравиметрический анализ

Термогравиметрические измерения проводили на приборе Netzsch STA 449 в динамическом режиме при нагревании в различных атмосферах до 1000°C со скоростью 5°/мин.

Расчет зависимости кислородной стехиометрии от температуры производили по изменению массы образца (после 400°C) в предположении, что оно связано только с выделением/поглощением кислорода. Из данных по изменению массы в зависимости от температуры определяли относительное изменение кислородной стехиометрии:

\[
3 - \delta_i = \left(M_{\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.5}\text{Fe}_{0.5}\text{O}_3} \frac{m_i}{m_0} - M_{\text{Ba}_0\text{Sr}_0\text{Co}_0\text{Fe}_{0.2}} \right) \frac{1}{M_O}
\]

где \(m_0, m_i \) – масса образца исходная и при температуре \(T_i \), соответственно.

\(O_x \) – исходное содержание кислорода при 25°C, определяемое методом йодометрического титрования. \(M_O \) – молярная масса кислорода = 15,999 г/моль

2.5. Анализ поверхности

Состояние и элементный состав поверхности синтезированных образцов были исследованы при помощи метода сканирующей электронной микроскопии на микроскопе Hitachi TM 1000 (ускоряющее напряжение 15 кВ, разрешающая способность 30 нм) с системой рентгеновского элементного анализа SwiftED-TM EDX (EDS).

2.6. Исследование процессов выделения кислорода

Для исследования зависимости кислородной нестехиометрии СКЭП оксидов от парциального давления кислорода и температуры была использована ранее разработанная в лаборатории методика и установка. Принципиальная схема установки приведена на рис. 15.
Рис. 15. Принципиальная схема установки для исследования высокотемпературного выделения кислорода из СКЭП оксидов. 1 - смеситель газов, 2 - высокотемпературная печь, 3 - датчик кислорода.

Методика эксперимента: исследуемый порошок СКЭП оксида фракции 56–63 мкм фиксировали керамической ватой в центре кварцевой трубки. Для уменьшения свободного объема системы и более равномерного прогрева поступающего газа свободный объем трубки заполняли либо битым кварцем, либо целыми кварцевыми вставками. Реактор с образцом помещали в печь таким образом, чтобы образец целиком находился в рабочей (изотермической) области печи.

Эксперимент состоял из двух этапов:

1) насыщение образца кислородом в искусственной воздушной смеси (кислород и гелий в соотношении 1:4) в изотермических условиях до прихода образца в равновесие (~60 минут);

2) ступенчатая смена воздушной смеси на чистый гелий.
Парциальное давление кислорода \(p_{O_2} \) на выходе из реактора определяли кислородным датчиком согласно уравнению Нернста:

\[
\ln p_{O_2} = - \frac{4F}{RT} (E - E_i) \quad (2.9)
\]

где \(p_{O_2} \) - парциальное давление кислорода; \(E, E_i \) - сигнал кислородного датчика (мВ) и термо-ЭДС датчика (мВ), соответственно; \(T \) – температура датчика кислорода (К). Температуру кислородного датчика поддерживали ПИД-регулятором «Термодат 14Е-5» при \(T=733,7^\circ C \). Напряжение на кислородном датчике измеряли при помощи милливольтметра с точностью до 0,1 мВ.

Скорость потока кислорода в потоке гелия определяли по формуле сложения газовых потоков:

\[
p_{O_2} = \frac{J_{O_2}}{J_{O_2} + J_{He}} \quad (2.10)
\]

Из уравнения (2.10) получаем уравнение (2.11):

\[
J_{O_2} = J_{He} \frac{p_{O_2}}{1 - p_{O_2}} \quad (2.11)
\]

где \(J_{He} \) – расход гелия в мл/мин, \(J_{O_2} \) – поток кислорода из образца в мл/мин.

2.7. Высокотемпературные исследования кислородной проницаемости дисковых мембран

Для изучения высокотемпературной кислородной проницаемости синтезированных газоплотных дисковых мембран (ДМ) различной толщины была использована установка, ранее собранная в лаборатории [67] и представленная на рисунке 16. Установка состоит из: системы подачи газов (смеситель газов УФПГС-4, СоЛО, Новосибирск); кварцевой ячейки, обеспечивающей градиент парциальных давлений по разные стороны мембраны; квадрупольного масс-спектрометра QMS 200 для определения концентрации и состава выходящих газов.
Рис 16. Установка для измерения кислородной проницаемости через газоплотные дисковые мембраны.

Необходимую толщину диска получали двухэтапной шлифовкой на P100 (125–160 мкм) и P1000 (размер зерна 14–20 мкм) шлифовальных бумагах. Шлифованные мембраны отжигались в печи при 900°C для “залечивания” поверхности и удаления органических примесей. Мембраны герметизировали в кварцевой ячейке с помощью стеклянной прокладки марки AR. Режим герметизации: нагрев образца до 975°C; выдержка в течение часа; охлаждение со скоростью 60°/час до 750°C.

Устройство кварцевой ячейки обеспечивает подачу газов с различных сторон запаянной мембраны и контроль температуры непосредственно мембраны. С питающей стороны на образец подавали смесь азота и кислорода. Со стороны низкого парциального давления кислорода подавали гелий или смесь гелия с CO₂. Соотношения газов регулировали при помощи смесителя газов УФПГС-4. Прошедший сквозь мембрану кислород регистрировали квадрупольным масс-спектрометром QMS 200. Калибровку эксперимента проводили относительно воздуха.

Исходные данные с масс-спектрометра получали в виде относительных интенсивностей сигналов исследуемых газов (кислорода, азота). В идеальном случае, концентрация кислорода в газе-носителе равна:

$$pO_{2.2} = pO_2^0 \frac{I_{O_2}}{I_{O_2}^0}$$ \hspace{1cm} (2.12)
Где $p_{O_2}^*$ - парциальное давление кислорода на проницаемой стороне мембранны; $p_{O_2}^0$ - парциальное давление кислорода в воздухе (0,209 атм); I_{O_2}, $I_{O_2}^0$ - экспериментальные и калибровочные данные с масс-спектрометра, соответственно.

В том случае, если в эксперименте наблюдался ненулевой сигнал азота, связанный с неидеальной герметизацией системы, вводили следующий поправочный коэффициент:

$$p_{O_2} = p_{O_2}^* - p_{O_2}^0 \frac{p_{N_2}}{p_{N_2}^0}$$ (2.13)

Где $p_{N_2} = p_{N_2}^0 \frac{I_{N_2}}{I_{N_2}^0}$ (2.14)

p_{O_2} - парциальное давление кислорода с проницаемой стороны с учетом натекающего азота; p_{N_2} - парциальное давление азота на проницаемой стороне; $p_{N_2}^0$ - концентрация азота в воздухе; I_{N_2}, $I_{N_2}^0$ - экспериментальные и калибровочные данные с масс-спектрометра, соответственно.

Таким образом, скорость потока кислорода считалась по формуле:

$$J_{O_2} = J_{He} \frac{p_{O_2} \text{ истинное}}{1 - p_{O_2} \text{ истинное}}$$ (2.15)

где J_{O_2} - скорость потока кислорода [мл/мин]; J_{He} - скорость потока газа-носителя [мл/мин].

Все полученные кислородные потоки нормировались на площадь рабочей поверхности мембраны и представлялись в размерности мл/(мин*см²):

$$J_{O_2} = \frac{J_{O_2}}{S}$$ (2.16)

$$S = \pi \frac{d^2}{4}$$ (2.17)

где S – площадь рабочей поверхности мембраны; d – рабочий диаметр мембраны.
2.8. Высокотемпературные исследования кислородной проницаемости микротрубчатых мембран

Для изучения кислородной проницаемости МТ мембран использовали горизонтальный реактор, узлы подачи и регистрации газов сохраняли. Проблемы исследования трубчатых мембран:

- сложность герметизации образца в высокотемпературной зоне.

- обеспечение одинаковой температуры по всему образцу при длине образца в 10 см и больше.

Учитывая высокую стойкость МТ мембран к термошоку, нами было решено упростить процесс измерения кислородной проницаемости. Герметизацию проводили в холодной зоне при помощи мягкого пластика с полимерным уплотнителем (рис. 17).

Для исследования механизмов кислородного транспорта необходимы изотермические исследования, поэтому всю поверхность, кроме центральной изотермической зоны в 2 см, МТ мембран блокировали кислород-непроницаемой пастой (смесь AR стекла и BSCF). Нормировку кислородных потоков производили на площадь незаблокированной зоны.

Устройство ячейки позволяет подавать газы как внутрь, так и снаружи мембраны. Образец фиксировали при помощи керамической ваты. Температуру печи регулировали с точностью 0,1° при помощи термопары типа ХА (K).

Рис 17. Установка для измерения кислородной проницаемости через газоплотные МТ мембранны.
Глава 3. Синтез и характеристика образцов $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-x}\text{Fe}_{0.2}\text{W}_x\text{O}_{3-\delta}$

3.1. Синтез образцов

Условия синтеза, такие как: температура спекания, скорость нагрева и охлаждения BSCF мембран, были выбраны при помощи литературных данных [21]. Для модифицированных вольфрамом соединений условия синтеза подбирали экспериментально. Использованные в настоящей работе температуры спекания материалов $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-x}\text{Fe}_{0.2}\text{W}_x\text{O}_{3-\delta}$ ($x=0$–0.10) приведены в таблице 2:

Таблица 2. Зависимость температуры спекания от содержания вольфрама в BSCF.

<table>
<thead>
<tr>
<th>Содержание вольфрама / x</th>
<th>T спекания / °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1100</td>
</tr>
<tr>
<td>0.005</td>
<td>1115</td>
</tr>
<tr>
<td>0.01</td>
<td>1125</td>
</tr>
<tr>
<td>0.02</td>
<td>1150</td>
</tr>
<tr>
<td>0.03</td>
<td>1155</td>
</tr>
<tr>
<td>0.05</td>
<td>1160</td>
</tr>
<tr>
<td>0.10</td>
<td>1160</td>
</tr>
</tbody>
</table>

3.2. Характеризация синтезированных образцов

Синтезированные образцы были исследованы методами СЭМ, ЭА, ТГ, йодометрического титрования и высокотемпературной дифрактометрии. Согласно данным СЭМ (рис. 18) поверхность образцов имеет блочную структуру, характерный размер зерен составляет 10–120 микрон. В образцах, с содержанием вольфрама 3% и более, наблюдается образование дополнительной фазы, распределенной по границам зерен. На сложе мембран наблюдается закрытая пористость. Плотность образцов, определенная с помощью гелиевого пикнометра, составила ~ 95% от теоретической плотности, рассчитанной из данных рентгенографического анализа. Использованная методика синтеза предполагает соответствующий заложенной стехиометрии состав. Результаты элементного анализа различных участков объема дали близкий результат, что свидетельствует об однородности материала.
Рис. 18. Микрофотографии поверхности мембран состава Ba_{0.5}Sr_{0.5}Co_{0.8-x}Fe_{0.2}W_xO_{3-δ} (x=0–0.10).
Рис. 19. Данные in situ рентгенофазового анализа порошка BSCF (а) на воздухе и (б) в вакууме.
Для определения зависимости структурных параметров BSCF оксида от температуры и парциального давления кислорода и сравнения с литературными данными использовали метод in situ высокотемпературной дифрактометрии. Диапазон температур: $T=25–1000^\circ\text{C}$. Диапазон давлений: воздух ($p_{O_2}=0,21$ атм) и динамический вакуум ($p_{O_2} \approx 5\cdot10^{-6}$ атм). Согласно полученным данным (рис. 19а и б), образец BSCF во всем диапазоне исследованных температур и давлений сохраняет структуру кубического перовскита, что совпадает с литературными данными [36].

На рисунке 20 приведена зависимость, рассчитанного из данных in situ высокотемпературной дифрактометрии, параметра элементарной ячейки (a) BSCF от температуры на воздухе и в вакууме. Начальный рост параметра a в основном связан с термическим расширением образца. Наличие излома определяется выделением кислорода из образца, которое вносит вклад в рост параметра решетки кубического перовскита.

Для определения абсолютных значений содержания кислорода, необходимых для количественного определения равновесной фазовой диаграммы «$\delta – p_{O_2} – T$», использовали методы йодометрического титрования и термогравиметрии.

Рис. 20. Зависимость параметра кубической решетки BSCF от температуры на воздухе и в вакууме.

Методом йодометрического титрования определяли исходное содержание кислорода в медленно охлажденных на воздухе образцах BSCF (полученное значение $3-\delta=2,667\pm0,005$), после чего образцы нагревали до определенной температуры ($T=600–900^\circ\text{C}$ с шагом в 100$^\circ\text{C}$) и в изотермических условиях образец выдерживали до
достижения равновесного состояния при следующих pO_2: 0,20, 0,60 и 0,96 атм. По изменению массы вещества определяли равновесное содержание кислорода в образце, в заданных экспериментальных условиях (рис. 21).

Рис. 21. Равновесные значения $3-\delta$ в BSCF оксиде при pO_2: 0,20, 0,60 и 0,96 атм.

3.3. Допирование BSCF вольфрамом

Согласно данным рентгенофазового анализа, BSCF и модифицированные вольфрамом образцы (до 2%, включительно) имеют структуру кубического перовскита (рис. 22а). В образцах с содержанием вольфрама 3% и выше, наряду с кубическим перовскитом, присутствует фаза двойного перовскита, что согласуется с результатами СЭМ (рис. 18).

Рис. 22. Данные РФА (а) и зависимость структурных параметров (б) от содержания вольфрама для составов $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-x}\text{Fe}_{0.2}\text{W}_x\text{O}_{3-\delta}$ ($x=0–0.1$).
Увеличение доли вольфрама в материале (до 2%, включительно) сопровождается ростом кубического параметра \(a \) (рис. 22б); при \(x > 2\% \) параметр \(a \) выходит на плато, при этом, начиная с 3\%, идет расслоение системы на две фазы: кубический перовскит (ОКР>150 нм) с параметром 3.989(1)Å и двойной перовскит (тип Ba₂CoWO₆) (ОКР~20 нм) с параметром 8.075(2)Å. Таким образом, данные РФА свидетельствуют, что при \(x \approx 2\% \) достигается предел растворимости вольфрама в кубической решетке BSCF. В главе (1.5) показано, что монофазные материалы с предельным содержанием сегнетоактивного катиона обладают наиболее интересными свойствами [92]. С данной точки зрения, состав с содержанием 2% вольфрама интересен для дальнейшего изучения. В дальнейшем данный состав будем обозначать - BSCF\(_{2}\).

Известно, что недостатком оксида BSCF является его структурная нестабильность. Как было отмечено в главе 1.4.2, при температурах ниже 850°C происходит разложение кубической фазы BSCF с образованием фазы гексагонального и кубического перовскитов с другим соотношением катионов (ур. 1.8) и высокие значения парциального давления кислорода ускоряют данный переход.

На рис. 23 приведены \textit{ex situ} рентгенофазовые данные для образцов BSCF и BSCF\(_{2}\), выдержанных различное время при \(T = 700°C \) в токе чистого кислорода.

![Рис. 23. Данные \textit{ex situ} РФА составов BSCF (а) и BSCF\(_{2}\) (б), полученные после выдержки (6, 12 дней) при \(T = 700°C \) в токе чистого кислорода. Звездой (*) помечены рефлексы фазы гексагонального перовскита.](image)

Как видно из рисунка 23а, действительно, со временем происходит разложение BSCF оксида с образованием фазы 2H-гексагонального перовскита, обозначенного
символом (*). Согласно проведенному при помощи метода Ритвельда анализу, доля 2H-гексагональной фазы после 12 дней выдержки при 700°C в чистом кислороде составляет ~5±1%. Это согласуется с литературными данными, в которых отмечается, что процесс образования гексагональной фазы при T<850°C протекает достаточно медленно [23], в то время как при высоких температурах (~900°C) фаза кубического BSCF перовскита стабильна (рис. 24), что так же согласуется с литературными данными [65].

Рис. 24. Данные ex situ РФА состава BSCF, полученные после выдержки при 900°C в токе чистого кислорода.

Образец BSCFW2 после выдержки в течение 12 дней, в аналогичных условиях, сохранил структуру кубического перовскита; следов гексагональной фазы не обнаружено (рис. 23б). Учитывая, что условия ex situ эксперимента были одинаковы в обоих случаях, можно утверждать, что модификация BSCF 2% вольфрамом привела к стабилизации кубической фазы.

3.4. Модель выделения кислорода в проточном реакторе

Модель выделения кислорода из нестехиометрических перовскитов и методика расчета кислородной нестехиометрии детально описаны в работе [67].

Предполагая идеальное перемешивание газа в небольшой области вокруг образца (Vₚ), скорость изменения парциального давления кислорода на выходе из реактора (pO₂) может быть описана в виде баланса масс между входящим потоком кислорода
(J_{вх}), выходящим потоком кислорода (J_{вых}) и скоростью выделяющегося кислорода из образца (dQ/dt):

$$V_{эф} \frac{p}{RT} \frac{dpO_2}{dt} = J_{вх} pO_{2_{вх}} / p - J_{вых} pO_2 / p + \frac{dQ}{dt}$$ \hspace{1cm} (3.1)$$

Где p – абсолютное давление равное 1 атм.

Разница между $J_{вх}$ и $J_{вых}$ связана с количеством выделяемого кислорода из оксида:

$$J_{вых} = J_{вх} + \frac{dQ}{dt}$$ \hspace{1cm} (3.2)$$

а количество кислорода в свою очередь равна:

$$Q(t) = W \frac{\delta(t) - \delta(0)}{2}$$ \hspace{1cm} (3.3)$$

Где W – количество моль образца в реакторе.

Как показано в работе [67], решением системы уравнений 3.1, 3.2 и 3.3 для кислородной нестехиометрии как функции от времени будет

$$\delta(t) = \delta(0) + 2 \frac{1}{W} \{J_{вх} \int_0^t \frac{pO_2(t) - pO_{2_{вх}}(t)}{p - pO_2(t)} dt - \frac{V_{эф} p}{RT} \ln \frac{p - pO_2(t)}{p - pO_2(0)} \}$$ \hspace{1cm} (3.4)$$

При известных параметрах $J_{вх}, pO_{2_{вх}}$, которые задаются в ходе эксперимента, и эффективного объема реактора $V_{эф}$, который определяется конструкцией реактора, становится возможным определение непрерывной зависимости кислородной нестехиометрии от температуры и парциального давления кислорода.

Таким образом, измеряя зависимость $\langle pO_2 - t \rangle$ в квазиравновесных условиях при $T=$const. можно для каждого давления pO_2 рассчитать кислородную стехиометрию образца.
3.5. Равновесная фазовая \(\delta - pO_2 - T\) диаграмма BSCF

В работе [67] было установлено, что критерием квазиравновесного выделения кислорода из образца является аффинное преобразование \(pO_2 - t\) кривых при нормировании времени на скорость потока газа-носителя. Таким образом, для получения непрерывной равновесной фазовой диаграммы \(\delta - pO_2 - T\) были проведены эксперименты по десорбции кислорода в изотермическом режиме на порошках BSCF и BSCFW2 фракции 56–63 мкм.

Методика эксперимента подробно описана в главе 2.6. На рисунке 25 приведены исходные данные по зависимости парциального давления кислорода на выходе из реактора от времени, полученные при температурах от 600–900°С при скорости потока газа-носителя \((J_{He})\) 50 мл/мин.

![Исходные экспериментальные данные выделения кислорода из BSCF.](image)

Рис. 25. Исходные экспериментальные данные выделения кислорода из BSCF.

Как видно из рисунка 26, полученные данные допускают аффинное преобразование при нормировании времени на скорость расхода гелия во всей области рабочих температур (600–900°С) и, следовательно, режим выделения кислорода из BSCF образцов при данных условиях является квазиравновесным:

\[
t^* = k \times t \times J_{He}
\]

где \(k\) – константа, обеспечивающая размерность \(t^*\) в секундах; \(t\) – время эксперимента; \(J_{He}\) – скорость потока гелия.
Рис. 2. Зависимость pO_2 от времени для температур (а, б) 900°С и (в, г) 600°С при различных скоростях потока гелия (а, в) и её аффинное преобразование (б, г).

На рисунке 2а приведены изотермы «3-δ – lg pO_2» BSCF для температур T=600–900°С (J_{He}=50 мл/мин) вместе с реперными точками, полученными методами ТГ и йодометрического титрования, и сравнение с литературными данными (рис. 27б) [93]. Полученные результаты практически полностью согласуются с литературными равновесными ТГ данными; различия связаны с абсолютными значениями исходной кислородной стехиометрии.

Наличие непрерывных данных позволило впервые зафиксировать узкую двухфазную область «P^1–P^2» в BSCF (рис. 27а) (P^1 – фаза низкотемпературного перовскита (Pm$\overline{3}m$), P^2 – фаза высокотемпературного перовскита (Fm$\overline{3}c$)), определение которой затруднено при использовании методов, дающих дискретные значения.
Рис. 27. Равновесная фазовая диаграмма «3-δ – lg pO₂ – T» BSCF (T=600–900°C) (а) и литературные данные (б).

Отметим, что после модификации вольфрамом интервал кислородной нестехиометрии материала увеличился (Δδ_BSCFW2=0,24 против Δδ_BSCF=0,20). Похожий эффект был отмечен в работе [79] при допировании BSCF иттрием. Данный эффект интересен, поскольку количество кобальта после модификации стало меньше и, следовательно, количество активного кислорода тоже должно было стать меньше. Возможно, данное явление связано с тем, что катионы W⁶⁺ стабилизируют зарядовое состояние катионов Co²⁺ и Fe²⁺, как это происходит в двойных перовскитах (Ba/Sr)₂CoWO₆ и (Ba/Sr)₂FeWO₆ [94,95], что увеличивает диапазон изменения кислородной стехиометрии. Для наглядности равновесные фазовые диаграммы были построены в 3D координатах (рис. 29). Для построения областей P¹ и P² в качестве опорных значений использовались точки перегиба изотерм.
Рис. 29. 3D равновесные фазовые «3-δ – lg pO₂ – Т» диаграммы BSCF и BSCFW2.
3.6. Определение термодинамических параметров

В состоянии равновесия химический потенциал кислорода в оксиде равен химическому потенциалу кислорода в газовой фазе:

\[\mu_{O}^{ABO_{3-s}} = \frac{1}{2} \mu_{O_2} \] \hspace{1cm} (3.6)

Последний, в свою очередь, определяется как:

\[\mu_{O_2} = \mu_{O_2}^0 + RT \ln pO_2 \] \hspace{1cm} (3.7)

Полученные равновесные данные позволяют рассчитать значения химического потенциала кислорода в оксиде относительно стандартного кислорода в газе:

\[\Delta \mu_{O}(\delta, T) = \mu_{O} - \frac{1}{2} \mu_{O_2} = \frac{RT}{2} \ln pO_2 \] \hspace{1cm} (3.8)

\[\Delta \mu_{O}(\delta, T) = \Delta H_O - T \Delta S_O \] \hspace{1cm} (3.9)

Следовательно, концентрационные зависимости парциальной молярной энталпии и энтропии подвижного кислорода (\(\delta=\text{const}\)) определяются как:

\[\Delta H_O = \frac{R}{2} \frac{d \ln pO_2}{d(1/T)} \bigg|_{\delta} \] \hspace{1cm} (3.6)

\[\Delta S_O = - \frac{RT}{2} \frac{d \ln pO_2}{dT} \bigg|_{\delta} \] \hspace{1cm} (3.7)

Пути линеаризации в Аррениусовских координатах \(pO_2\) и \(T\) данных при фиксированной стехиометрии была определена зависимость парциальной молярной энталпии/энтропии оксида от кислородной нестехиометрии (рис. 30). В случае BSCF, полученные результаты (рис. 30а) согласуются с литературными данными [40].

60
Рис. 30. Зависимость парциальной мольной энтальпии и энтропии (а) BSCF и (б) BSCFW2 оксидов от кислородной нестехиометрии.

Из рис. 30 видно, что введение 2% сегнетоактивного катиона вольфрама в структуру BSCF привело к уширению двухфазной области «P₁–P²». По-видимому, данный эффект связан с «размытием» фазовых переходов характерных для сегнетоэластических релаксоров [90].

Следует отметить, что в процессах изучения кислородной проницаемости структура мембраны, как правило, соответствует области низкотемпературного перовскита (P₁) (синяя область). В данном диапазоне изменение парциальной мольной энталпии кислорода составляет ~80 и ~100 кДж/моль для BSCF и BSCFW2, соответственно.

3.7. Заключение к главе

Показано, что частичное изоморфное замещение ионов кобальта двумя процентами высокозарядного сегнетоактивного катиона вольфрама (VI) подавляет
переход «кубический–гексагональный» перовскит, который характерен для BSCF при $T < 850^\circ C$.

Получены равновесные данные по кислородной нестехиометрии BSCF и BSCFW2 в виде непрерывной функции от pO_2 в диапазоне температур 600–900$^\circ C$.

На основании полученных фазовых “3$- \delta - \lg pO_2 - T$” диаграмм рассчитаны термодинамические параметры изученных систем BSCF и BSCFW2.
Глава 4. Кислородная проницаемость дисковых мембран

4.1. Постановка эксперимента

В данной главе описаны результаты исследования кислородной проницаемости газоплотных дисковых BSCF и BSCFW2 мембран (диаметр: 15,50 мм; толщины: 1,60, 2,60 и 3,20 мм) в диапазоне температур 750–950ºС (шаг 50ºС) и парциальных давлений кислорода с питающей стороны 0,20–0,70 атм (шаг 0,10 атм).

4.2. Модель кислородного транспорта в СКЭП оксидах

Для понимания процессов, протекающих на поверхности и в объеме мембраны, представим схематически процесс кислородного транспорта кислорода через мембрану (рис. 31).

Рис. 31. Кислородный транспорт через плотную кислород-селективную мембрану.

В случае идеальной мембраны вся поверхность мембраны будет равнодоступной. В этом случае справедливы следующие соотношения: выражение для баланса потоков кислорода:

\[J_{вых} = J_{вых} \] \hspace{1cm} (4.1)

и первый закон Фика:

\[J_{O_2} = -D \frac{C_2 - C_1}{L} \] \hspace{1cm} (4.2)
Где D - коэффициент химической диффузии, предполагающийся постоянным; C_1 и C_2 - приповерхностные концентрации кислорода с питающей и проницаемой стороны, соответственно.

Путем несложных преобразований получаем следующее выражение:

$$J_{O_2} = D \frac{C_1 - C_2}{L} = k_{адс} pO_{2.1}^n - k_{дес} C_1 = k_{дес} pO_{2.2}^n - k_{адс} C_2 \quad (4.3)$$

Отсюда зависимость потока кислорода от разности парциальных давлений кислорода с питающей и проницаемой стороны может быть выражена как:

$$J_{O_2} = \frac{pO_{2.1}^n - pO_{2.2}^n}{L} + \frac{2}{DK} = \gamma (pO_{2.1}^n - pO_{2.2}^n) \quad (4.4)$$

Откуда следует, что $1/\gamma$ зависит от толщины мембраны следующим образом:

$$\frac{1}{\gamma} = \frac{L}{DK} + \frac{2}{k_{адс}} \quad (4.5)$$

В случае, когда реакция обмена кислорода лимитирована объемной диффузией или же кинетикой поверхностных реакций ($D << k_{адс}$ либо $D >> k_{адс}$, соответственно), выражение (4.5) примет следующий вид:

$$\frac{1}{\gamma} = \frac{L}{DK} \quad (4.6)$$

либо

$$\frac{1}{\gamma} = \frac{2}{k_{адс}}, \quad \text{соответственно} \quad (4.7)$$

В случае, когда лимитирующей стадией является объемная диффузия, при помощи анализа экспериментальных данных в виде зависимости $1/\gamma$ от L можно определить вклад диффузии в процесс кислородного транспорта через мембрану. В этом случае арренусовская зависимость ($\ln \gamma - 1/RT$) дает значение эффективной энергии активации:
\[\ln \gamma \sim - \frac{E_a(D) + \Delta H}{RT} \Rightarrow E_a^{\text{эфф}} = E_a(D) + \Delta H \] (4.8)

Поскольку \[\ln K \sim \frac{\Delta H}{RT} \] (4.9)

Энтальпия константы равновесия может быть рассчитана из:

\[C_i = K pO_{2,i}^m \] (4.10)

используя зависимость равновесного парциального давления кислорода от температуры при фиксированной \(\delta \):

\[-RT \ln K = -RT \ln C_i + mRT \ln pO_{2,i} \] (4.11)

Рассчитанные из равновесных фазовых диаграмм значения парциальной молярной энталпии связаны с энталпийей константы равновесия как:

\[\Delta H = 2m \Delta H_O \] (4.12)

gде \(m \) определяется из наклона фазовой диаграммы и равна \(\sim 0.005 \), как для BSCF, так и для BSCFW2. В таком случае, значение энталпии константы равновесия равно \(\sim 1 \) кДж/моль. Действительно, изменение стехиометрии кислорода во всем температурном интервале составляет лишь несколько процентов и значение энталпии не может превышать нескольких кДж/моль.

Таким образом, вкладом энталпии константы равновесия в эффективную энергию активации можно пренебречь:

\[E_a^{\text{эфф}} \sim E_a(D) \] (4.13)

В случае, если кинетика поверхностных реакций будет лимитировать процесс кислородного транспорта, полученное значение \(\gamma \) будет прямо пропорционально \(k_{\text{адс}} \) и рассчитанная энергия активации будет относиться к ней:
\[\ln \gamma \sim - \frac{E_a (k_{ads})}{RT} \rightarrow E_a = E_a (k_{ads}) \] (4.14)

4.3. Изучение кислородной проницаемости BSCF и BSCFW2 дисковых мембран.

На рис. 32 приведена зависимость кислородной проницаемости дисковых BSCF и BSCFW2 мембран одинаковой толщины (1,60 мм) от температуры при парциальном давлении кислорода 0,60 атм. Из данных видно, что модификация BSCF 2% вольфрама привела к увеличению потоков кислорода на ~15%.

Рис. 32. Зависимость потоков кислорода через дисковые BSCF и BSCFW2 мембраны от температуры при (а) \(pO_{2.1} \)=0,20 атм и (б) \(pO_{2.1} \)=0,60 атм. \(L=1,60 \) мм.

Допирование также повысило стабильность кислородных потоков при длительной выдержке мембран (рис. 33), что, по-видимому, связано с подавлением фазового перехода кубической фазы в гексагональную.
Рис. 33. Зависимость потоков кислорода через дисковые BSCF и BSCFW2 мембраны толщиной 1,60 мм от времени ($pO_{2.1}=0,60$ атм).

Известно, что «основный» характер катионов щелочно-/редкоземельных металлов снижает стабильность кислород-проницаемых мембран в атмосфере «кислого» CO₂. Следовательно, увеличение кислотности материала повысит его стабильность в присутствии CO₂. Предполагается, что к такому эффекту может привести добавка в структуру BSCF оксида WO₃, обладающего свойствами кислоты Льюиса.

На рис. 34 приведены данные по влиянию CO₂, подаваемого с проницаемой стороны (со стороны $pO_{2.2}$), на величину потока кислорода через дисковую мембрану. Как видно из рисунка, использование газа-носителя, содержащего 20% CO₂, приводит падению кислородных потоков в 2,2 и 1,4 раза для BSCF и BSCFW2 дисковых мембран, соответственно. При этом для BSCF мембраны уменьшение кислородного потока медленно продолжалось после первоначального быстрого падения, в то время как для BSCFW2 мембраны кислородный поток после быстрого спада стабилизировался.
Рис. 34. Зависимость потока кислорода от времени для дисковых BSCFW2 (1) и BSCF (2) мембран в зависимости от содержания CO₂ в области низкого парциального давления кислорода. L=1,60 мм. T=800°С. pO₂₁=0,60 атм. Общая скорость газаносителя (He/CO₂) = 50 мл/мин.

4.4. Анализ экспериментальных данных по кислородным потокам

Рис. 35. Линеаризация кислородных потоков дисковых BSCF мембран.
Как было отмечено в главе 1.4.5, для достоверного определения лимитирующей стадии кислородного транспорта необходимо провести измерения на серии мембран различной толщины. В данной работе было исследовано по три мембраны толщиной 1,60, 2,60 и 3,20 мм для каждого состава. Экспериментальные данные по линеаризации кислородных потоков дисковых BSCF и BSCFW2 мембран различных толщин представлены на рис. 35 и 36, соответственно.

Зависимость параметра γ от толщины мембраны (рис. 37), как было указано выше (глава 4.2), свидетельствует о контроле кислородной проницаемости объемной диффузией ионов кислорода ($D<<k_{ad}$) как в случае BSCF, так и BSCFW2, во всем температурном интервале.
Рис. 37. Зависимость параметра γ от $1/L$ для дисковых BSCF (а) и BSCFW2 (б) мембран.

Как видно из рисунка 38, энергия активации объемной диффузии в диапазоне температур 750–900°C составляет ~65 кДж/моль независимо от состава и толщины мембран. Согласно проведенному анализу, для BSCF и BSCFW2 дисковых мембран толщиной 1,60–3,20 мм кислородные потоки контролируются объемной диффузией кислорода.

Рис. 38. Зависимость параметра γ от температуры в аррениусовских координатах для дисковых BSCF (а) и BSCFW2 (б) мембран.

4.5. Заключение к главе

Показано, что частичное изоморфное замещение ионов кобальта двумя процентами высокозарядного сегнетоактивного катиона вольфрама (VI) существенно улучшает функциональные свойства мембранного материала; подавляет деградацию...
мембраны в атмосфере, содержащей CO₂; повышает стабильность и величины кислородных потоков дисковых мембран.

Согласно проведенным исследованиям на дисковых мембранах различной толщины лимитирующей стадией кислородного транспорта в BSCF и BSCFW2 перовскитах является объемная диффузия оксид ионов.
5.1. Модель кислородного транспорта через микротрубчатые мембраны

При анализе свойств микротрубчатых (МТ) мембран и их сравнении со свойствами дисковых мембран необходимо учитывать особенности трубчатой формы. Главное различие – это неравномерность кислородных потоков через МТ вдоль её длины, ввиду того, что парциальное давление кислорода в газе-носителе постепенно увеличивается по мере прохождения в микротрубке вплоть до значения \(p_{O_2,2} \). В первом приближении можно считать, что зависимость насыщения газового потока кислородом от длины мембраны близка к линейной (ввиду значительной длины и малого диаметра микротрубки). Это позволяет внести необходимые коррективы в описание модели кислородного транспорта через МТ мембраны. Таким образом, истинный градиент между внешним и внутренним давлением будет не \(p_{O_2,1} - p_{O_2,2} \), как в случае с дисковыми мембранами, а \(p_{O_2,1} - (p_{O_2,2})/2 \). Тогда полученная для дисковых мембран зависимость кислородных потоков от разницы парциальных давлений (ур. 4.4) для микротрубок примет вид:

\[
J_{O_2} = \gamma(p_{O_2,1} - p_{O_2,2}/2) \tag{5.1}
\]

Литературные данные указывают на то, что чаще всего процессами, лимитирующими кислородные потоки в МТ мембранах, являются поверхностные реакции [42,91,80,100]. Это связано с тем, что процедура синтеза предполагает получение высокопористых МТ мембран (в среднем с пористостью ~35%) с тонким газоплотным внутренним слоем (~50 мкм), что существенно меньше характеристической толщины \(L_c \) [40].

5.2. Постановка эксперимента

Для изучения высокотемпературной кислородной проницаемости МТ мембраны были проведены измерения с использованием газоплотных МТ BSCFW2 мембран (связка НМП/ПС, см. гл 2.1) в диапазоне температур \(T: 800–900^\circ\text{C} \) и парциальных давлений \(p_{O_2,1} \): 0,10–0,70 атм. Мембраны были приготовлены методом обратной фазовой инверсии (глава 2.1) и имели диаметр: внешний ~2 мм, внутренний ~1 мм.
Методика измерения кислородной проницаемости МТ мембран подробно описана в главе 2.7.

На рис. 39 приведены данные фазового состава мембраны до (рентгенограмма №1) и после (рентгенограмма №2) эксперимента. Для определения фазового состава образцов использовали порошки измельченных МТ мембран. Согласно данным, приведенным на рис. 36 (рентгенограмма №1), материал МТ мембраны имеет структуру кубического перовскита. Параметр ячейки образца равен 3.989±0.001Å, что согласуется с данными, полученными для дискового образца.

С помощью электронного микроскопа исследовали внешнюю/внутреннюю поверхность и элементный состав МТ мембран. На рис. 40 приведены микрофотографии микротрубок, на которых видна развитая объемная пористость и тонкий газоплотный слой с внутренней стороны мембраны. Плотность образцов, определенная путем деления массы образца на объем, составила ~70% от рентгеновской плотности. В таблице 3 приведены геометрические параметры МТ мембран, с помощью которых, в частности, рассчитывался их объем.
Рис. 40. Микрофотографии (а) внешней, (б) внутренней и (в) торцовой поверхности МТ BSCFW2 мембраны.

Таблица 3. Геометрические параметры МТ мембран.

<table>
<thead>
<tr>
<th>Параметр МТ мембраны</th>
<th>Величина, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Внутренний диаметр</td>
<td>0,85–0,95</td>
</tr>
<tr>
<td>Внешний диаметр</td>
<td>2,15–2,25</td>
</tr>
<tr>
<td>Длина</td>
<td>100–120</td>
</tr>
<tr>
<td>Рабочая длина</td>
<td>50–60</td>
</tr>
<tr>
<td>Толщина газоплотного слоя</td>
<td>0,02–0,03</td>
</tr>
<tr>
<td>Рабочая площадь</td>
<td>1,4–1,8 см²</td>
</tr>
</tbody>
</table>

Согласно данным элементного анализа в серосодержащих образцах обнаружено до 5% массовых долей серы, что согласуется с введенным количеством серосодержащего полимера.
5.3. Кислородная проницаемость микротрубчатых BSCFW2 мембран.

На рис. 41а представлены зависимости кислородных потоков от парциального давления кислорода pO₂ и температуры. Для сравнения, кислородный поток при T=900°C и pO₂=0,20 атм MT BSCFW2 мембран равен ~4 мл/мин*см², что заметно выше, чем у MT мембраны состава BSCF при аналогичных условиях ~2,5 мл/(мин*см³) [80]. Кислородный поток, при котором процессы конверсии метана в синтез газ в КМР становятся экономически выгодными, 3,5 мл/(мин*см³) [2] достигается при T=900°C и pO₂=0,20 атм.

![Диаграмма зависимости потоков кислорода через МТ BSCFW2 мембраны от температуры и времени](image)

Рис. 41. Зависимость потоков кислорода через МТ BSCFW2 мембраны от (а) температуры и (б) времени при T=800°C и pO₂=0,20 атм.

Тест на стабильность работы мембраны (рис. 41б) показал, что в течение 170 часов при T=800°C, pO₂=0,20 атм. (суммарный поток смеси кислород/азот равен 200 мл/мин) и J_Ne=50 мл/мин кислородный поток J_O2 ~ 1,6 мл/(мин*см²) не изменялся от времени. Долговременная стабильность мембраны показывает, что примесные фазы не влияют на работу MT мембраны (рис. 39, рентгенограмма №2). Образования гексагональной фазы BSCF после тестирования мембраны не обнаружено.

С целью исследования стабильности MT BSCFW2 мембраны в присутствии углекислого газа был проведен следующий эксперимент: с питающей стороны через мини-компрессор со скоростью 200 мл/мин подавали воздух; Внутрь MT мембраны подавали чистый гелий со скоростью 80 мл/мин. Далее образец нагревали до рабочей температуры (800, 850, 900°С) и выдерживали до установления стационарных условий. Далее происходила ступенчатая смена гелия на смесь CO₂/He (20 и 60 мл/мин,
соответственно). Полученные данные представлены на рис. 42а. Смена чистого гелия на смесь с 25% CO₂ приводит к экспоненциальному спаду потоков кислорода, причем чем ниже температура, тем выше скорость и глубина спада. Следует отметить, что потоки MT BSCFW2 мембран стабилизируются на ненулевом значении, в отличие от BSCF, где деградация потоков продолжается до полного их прекращения [101]. Из рис. 42а было построено соотношение начальных потоков к конечным (рис. 42б).

Рис. 42. Влияние CO₂ на потоки кислорода в температурном интервале 800–900°C (а) и соотношение начального и конечного значений потоков кислорода при смене газаносителя (б).

Использование CO₂ содержащей смеси привело к падению потоков в 8 – 2 раз в температурном интервале 800–900°C (Рис. 42б). Необходимо отметить резкое уменьшение степени влияния CO₂ при 900°C. В главе 1.4.6 было показано, что область существования карбонатов в перовскитоподобных оксидах при данных парциальных давлениях углекислого газа лежит в основном при температурах ниже 900°C.

5.4. Определение лимитирующей стадии кислородных потоков

На рис. 43 представлена линеаризация экспериментальных данных по кислородным потокам в степенных координатах \(pO_{2.1}^n - (pO_{2.2}^n)/2 \). Показатель степени \(n \) при всех температурах постоянен и равен 0.5. Используя данные, представленные на рис. 43а были рассчитаны значения \(\gamma \) и построена аррениусовская зависимость кислородных потоков от температуры (рис. 43б).
Рис. 43. (а) Линеаризация кислородных потоков MT BSCFW2 мембран (НМП/ПС) и (б) аррениусовская зависимость параметра γ от температуры.

Эффективная энергия активации кислородной проницаемости MT BSCFW2 мембран, определенная из аррениусовской зависимости параметра γ от температуры, равна 110±10 кДж/моль (рис. 43б), что совпадает с литературными данными для MT BSCF мембран (~100кДж/моль) [80]. На основании того факта, что величина газоплотного слоя MT мембраны (L~0,05 мм) существенно меньше характеристической толщины (Lc~0,5 мм [102]) (см. гл. 1.4.5), эффективная энергия активации отнесена к поверхностным стадиям кислородного обмена.

5.5. Заключение к главе

Разработана модель кислородной проницаемости в микротрубчатых мембранах, которая учитывает градиент парциального давления кислорода вдоль проницаемой поверхности мембраны. Методом фазовой инверсии на основе серосодержащей связки НМП/ПС были получены высокопористые микротрубчатые мембранны с тонким газоплотным слоем с внутренней стороны. Исследования зависимости кислородных потоков от парциального давления кислорода и температуры показали, что в интервале температур 800–900ºС лимитирующей стадией кислородного транспорта является кислородный обмен на поверхности мембраны с энергией активации равной 110±10 кДж/моль. Тестирование кислородпроводящей мембраны в течение длительного времени продемонстрировало стабильность кислородных потоков мембраны и структурных параметров материала.
Глава 6. Прямой нагрев МТ мембран электрическим током

Известно, что приемлемыми для практического использования скорости кислородных потоков, проходящие через кислород-проницаемые мембраны, могут быть достигнуты при температурах выше 600°C. Температура мембраны во время реакции поддерживается, как правило, за счет внешнего нагрева и за счет тепла, выделяемого при протекании экзотермических химических реакций.

Недостатками повсеместно используемого внешнего обогрева [21,44,58] являются:

(1) дополнительные энергозатраты, расходуемые на обогрев не только реактора, но и газообразных реагентов, протекающих через реактор;

(2) инерционность нагрева, которая затрудняет оперативную регулировку температуры в реакционной зоне, поскольку для регулировки температуры в реакционной зоне требуется определенное время для прогрева источника внешнего обогрева, газообразных реагентов, поступающих в реактор, а затем самой мембраны, что приводит к его нестабильной работе.

Очевидно, что использование таких технологических приемов как рекуперация тепла, надежная термоизоляция реактора, использование термоэлектриков и т.д. позволяет повысить энергоэффективность использования кислород-проницаемых мембран, в том числе, в каталитических мембранных реакторах. Однако это не отменяет поиска других вариантов эффективного нагрева кислород-проницаемых мембран.

Состав BSCFW2, как и многие представители перовскитоподобных оксидов, обладает электронной проводимостью, что дает возможность нагрева МТ мембранны из BSCFW2 до рабочей температуры путем пропускания через них электрического тока. (рис. 44). В данной главе приведены результаты исследований непосредственного (прямого) нагрева мембраны электрическим током. Данный метод является новым и перспективным - он позволяет повысить энергоэффективность, производительность МТ мембран, оперативность управления температурным режимом. Кроме того, поверхность мембраны становится доступной для исследований.
Для нагрева использовали переменный (50 Гц) ток, который пропускали непосредственно через мембраны. Использование переменного тока предотвращало поляризацию электродов за счет миграции ионов и электрохимическое разложение СКЭП оксидов с последующим разрушением мембраны [103].

Рис. 44. Зависимость сопротивления MT BSCFW2 мембран от температуры и разных парциальных давлений 0,2; 0,6; 1,0 атм.

6.1. Методика эксперимента

Для изучения кислородной проницаемости MT мембран, нагреваемых при помощи тока, была собрана установка, принципиальная схема которой приведена на рис. 45.

Рис. 45. Схема установки для изучения кислородной проницаемости MT мембран, нагретых переменным током. Расшифровка приведена ниже по тексту.

Установка состоит из кварцевого корпуса (1) с патрубками для подачи (1в) и отвода газов (1г), в котором размещена MT мембрана (2). С каждой стороны мембраны вставляли полимерные трубки, а места соединений герметизировали термообжимами.
Таким образом, обеспечивали герметичность каналов подачи (1а) и отвода газов (1б). Посредством нанесенного серебряного токопроводящего покрытия (3), обеспечивали электрический контакт между МТ мембраной и источником переменного электрического тока (4). Температуру мембраны измеряли с помощью инфракрасного пирометра (5) IMPAC IGA 300 (диапазон рабочих температур 400–1500°C, фокусное расстояние 250 мм, ширина метки 2,0 мм) с точностью 0,1°. При помощи регулятора тока (6) производили управляемый нагрев образца, обеспечивая необходимый температурный режим в ходе эксперимента. Регулирование газовых потоков осуществляли при помощи смесителя газов УФПГС-4 (СоЛО, Новосибирск) (7). Методика регистрации и расчета потоков кислорода на выходе из реактора аналогична методике, представленной в главе 4.1.

6.2. Изучение кислородной проницаемости МТ мембран, нагретых электрическим током

Вначале были определены условия, при которых потоки кислорода не зависят от скорости питающего газа и газа-носителя. Для этого зафиксируем два параметра: температуру и скорость газа-носителя (50 мл/мин). В данных условиях при скорости питающего газа выше 200 мл/мин (воздушная смесь) потоки кислорода оставались неизменными (рис. 46а). Далее зафиксировать скорость питающего газа в 200 мл/мин, варьировать скорость газа-носителя (рис. 46б). В пределах 100 мл/мин не удалось достичь постоянного значения потока кислорода.

Рис. 46. Зависимость потока кислорода от скорости питающего газа (а) и газа-носителя (б) (T=800°C).
Дальнейшие эксперименты проводили при следующих условиях: скорость потока питающего газа 200 мл/мин, скорость потока газа носителя 80 мл/мин.

Для определения влияния тока на кислородные потоки MT BSCFW2 мембран, были проведены эксперименты, условия которых аналогичны представленным в главе 5.2. На рис. 47 представлена линеаризация кислородных потоков MT BSCFW2 мембран, полученных с использованием серосодержащей связки НМП/ПС, нагретых электрическим током. Методом, описанным в главах 4.1 и 5.1, была рассчитана эффективная энергия активации кислородного транспорта в микротрубчатых мембранах, нагретых переменным током. Величина энергии активации составила порядка 80 кДж/моль, что ощутимо меньше значения, полученного в экспериментах на идентичной мембране 110 кДж/моль (внешний нагрев).

Рис. 47. (а) Линеаризация кислородных потоков MT BSCFW2 (НМП/ПС) мембран, нагретых током, и (б) аррениусовская зависимость параметра \(\gamma \) от температуры.

Как показало сравнение кислородных потоков, полученных разными способами нагрева (рис. 43а и 47а), нагрев непосредственно мембраны электрическим током является более эффективным.

Как правило, равномерный нагрев образцов в печах является сложной задачей. При понижении температуры печи температурные градиенты усиливаются, что приводит к увеличению разницы в кислородных потоках, полученных при разных способах нагрева. Увеличение потоков кислорода (особенно заметное при более низких температурах), по-видимому, связано с более равномерным прогревом электрическим током мембраны по всей длине. Следует отметить, что открытая
поверхность образца позволяет использовать пирометр для контроля температуры непосредственно самой мембраны.

6.3. Влияние связующего полимера на кислородные потоки через МТ мембраны

Использование связки ДМCO/ациетилцеллюлоза (ДМСО/АЦ) позволяет получать МТ мембраны без примесей серы. На рис. 48 приведена линеаризация кислородных потоков МТ BSCFW2 мембран, полученных с использованием связки ДМСО/АЦ, нагретых током и аррениусовская зависимость параметра γ от температуры. Величина эффективной энергии активации составила порядка 60 кДж/моль, что меньше значения, полученного в экспериментах на серо-содержащей мембране 80 кДж/моль (рис. 47б). Полученные данные согласуются с литературными, в которых также отмечается негативное влияние серы на величину кислородных потоков и энергию активации, что связывают с блокировкой поверхности мембраны сульфатами щелочноземельных металлов.

Рис. 48. (а) Линеаризация кислородных потоков МТ BSCFW2 (ДМСО/АЦ) мембран, нагретых током, и (б) аррениусовская зависимость параметра γ от температуры.

На рис. 49 приведено сравнение кислородных потоков МТ BSCFW2 мембран, полученных с использованием различных связок, и дисковой BSCFW2 мембраны толщиной 1,60 мм (pO2=0,21 атм). На таблице 4 приведено сравнение энергий активаций кислородного транспорта в исследованных МТ мембранах.
Рис. 49. Зависимость кислородных потоков МТ BSCFW2 мембран, полученных с использованием полимерных связующих ДМСО/АЦ и НМП/ПС, и дисковой BSCFW2 мембраны толщиной 1,60 мм ($pO_2=0,21$ атм).

Таблица 4. Энергии активации кислородного транспорта в МТ мембранах.

<table>
<thead>
<tr>
<th>Образец</th>
<th>Энергия активации / кДж*моль⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>ДМСО/АЦ нагрев током</td>
<td>60±10</td>
</tr>
<tr>
<td>НМП/ПС нагрев током</td>
<td>80±5</td>
</tr>
<tr>
<td>НМП/ПС нагрев печью</td>
<td>110±10</td>
</tr>
</tbody>
</table>

Из рис. 49 видно, что использование ДМСО/АЦ связки и прямого нагрева позволяет значительно повысить кислородные потоки МТ мембран при температурах ниже 850° С. Влияние серы проявляется более всего при низких температурах, что согласуется с литературными данными о влиянии серы на кислородные потоки МТ BSCF мембран [100].
6.4. Сравнение эффективности нагрева MT BSCFW2 мембран печью и электрическим током

Как уже было отмечено, энергозатраты при использовании MT мембран могут быть понижены путем различных технологических приемов, например, улучшения теплоизоляции реактора и рекуперации тепла отходящих газов и т.д. Тем не менее, представляет интерес сравнить энергозатратность методов по крайней мере в лабораторных условиях. Для сравнения энергозатрат при получении кислорода разными способами нагрева, была собрана приведенная ниже установка (рис. 50).

Рис. 50. Установка для исследования влияния способа нагрева на кислородную проницаемость и энергозатраты при получении кислорода. Расшифровка приведена ниже по тексту.

В центре трубчатой печи (1) была помещена MT мембрана (2), которая была герметично запаяна при помощи герметика (3) в кварцевые трубки (4). На MT мембрану были нанесены серебряные токоподводящие контакты (5), соединенные с источником тока (6). Температуру мембраны контролировали при помощи пирометра IGA-300 (7) через отверстие (8) в трубчатой печи. В электрические цепи нагрева печи и прямого нагрева MT мембраны были добавлены цифровые вольтметры (9) и амперметры (10), при помощи которых определяли подводимую к нагрузке мощность. Газовые линии включали в себя смеситель газов (11) и квадрупольный масс-спектрометр QMS200 (12), с помощью которого определяли объем полученного
кислорода. Описанная установка позволяла сравнивать энергозатраты на получение определенного объема кислорода при нагревании МТ мембраны печью и непосредственно электрическим током при постоянных параметрах (pO₂, T мембраны, геометрии реактора, подвода/отвода газов, теплопотери и т.д.).

На рис. 51 приведены рассчитанные значения энергозатрат на получение 1м³ кислорода из воздуха при помощи МТ BSCFW2 мембран (ДМСО/АЦ) внешним и прямым нагревом током.

Рис. 51. Значения энергозатрат на получение 1м³ кислорода при помощи нагрева МТ BSCFW2 мембран печью (1) и электрическим током (2).

Из рисунка видно, что наиболее эффективно нагрев током проявляет себя при понижении температуры. Обращает на себя внимание отсутствие зависимости энергозатрат от температуры при прямом нагреве мембраны электрическим током. Это означает, что все подводимое тепло/мощность, практически без потерь, непосредственно идет на нагрев материала мембраны, что обеспечивает пропорциональное увеличение кислородных потоков.

Наличие высоких градиентов по температуре между разогретой током до температур 600–1000°C мембраной и корпусом мембранного модуля позволит снизить требования к конструкционным материалам и, например, заменить хромистые стали, устойчивые к высоким температурам, на более дешевые и экологически безопасные материалы.
6.5. Тест на стабильность кислородных потоков

Простота и более высокая безопасность установки позволила увеличить время наблюдения за мембраной, таким образом, количество времени на тест стабильной работы мембраны было увеличено до приемлемого значения в 1 месяц. Эксперимент показал, что в течение 30 дней при \(T=800^\circ C, pO_{2.1}=0,20 \) атм. (суммарный поток смеси кислород/азот равен 200 мл/мин) и потоке гелия 80 мл/мин кислородный поток \(J_{O_2} \sim 3 \) мл/(мин*см²) не изменялся от времени, что показывает стабильность не только MT BSCFW2 мембраны (НМП/ПС), но и самого способа нагрева (рис. 52).

![Diagram](image_url)

Рис. 52. Зависимость потоков кислорода через MT BSCFW2 мембраны (НМП/ПС) времени при \(T=800^\circ C \) и \(pO_{2.1}=0,20 \) атм.

Известно, что MT BSCFW2 мембраны обладают высокой стабильностью к термошоку. Методом прямого нагрева MT BSCFW2 мембраны (ДМСО/АЦ) быстро нагревали и охлаждали с 625–800\(^\circ\)C со скоростью 35\(^\circ\)/мин (\(pO_{2.1}=0,20 \) атм). На рисунке 53 приведен фрагмент термоциклирования MT BSCFW2 мембраны (10 циклов). Один цикл длился 40 минут. В ходе эксперимента в течение ~170 часов было проведено 260 циклов, после чего эксперимент остановили из-за окисления контактов.
Рис. 53. Термоциклирование MT BSCFW2 мембраны (ДМСО/АЦ). Условия эксперимента: $\Delta T=625–800^\circ$C; $V_{нагрев/охлаждения} = 35^\circ$/мин; $pO_2,1=0,20$ атм.

Результаты термоциклирования (260 циклов) показали стабильность работы мембраны и отсутствие деградации ее материала (Рис. 54).

Рис. 54. Рентгенограммы MT BSCFW2 мембраны (ДМСО/АЦ) до (рентгенограмма №1) и после (рентгенограмма №2) термоциклирования.

6.6. Заключение к главе

Анализируя данные полученные при изучении различных способов нагрева MT мембран и их влияния на кислородный транспорт, можно сделать следующие выводы:
Полученные значения кислородных потоков через MT BSCFW2 мембрану при прямом и внешнем нагреве свидетельствуют о том, что нагрев мембран переменным электрическим током обеспечивает равномерный и эффективный прогрев всей мембраны и приводит к более высокой производительности мембран. Уменьшение энергии активации кислородных потоков при нагреве током, по-видимому, также связано с более равномерным прогревом MT мембраны.

Нагрев мембран переменным электрическим током снимает поляризацию электродов и предотвращает разрушение материала мембраны под действием электрического тока. Тест MT BSCFW2 мембран, нагретых переменным током в течение 30 дней, подтверждает стабильность MT мембран при таком способе нагрева.

Сравнение энергозатрат для получения 1м³ кислорода с помощью MT BSCFW2 мембран при прямом и внешнем нагреве показало, что нагрев MT мембран переменным электрическим током обеспечивает более высокую энергоэффективность процесса сепарации кислорода в мембранном реакторе.

Прямой нагрев током позволяет заметно уменьшить время запуска устройства и инерционность при регулировании температурного режима.

Использование нагрева мембран током позволило упростить дизайн реактора; в такой конструкции мембраны одновременно исполняют роль селективных сепараторов кислорода и нагревательных элементов, обеспечивающих необходимую температуру мембраны.
Глава 7. In situ рентгенофазовый анализ поверхности МТ мембран в процессе их работы

Нагрев МТ мембран током открывает возможность прямого доступа к поверхности мембраны во время ее функционирования. Это открывает новые возможности по исследованию поверхности мембраны разным методам непосредственно во время ее функционирования. Нами впервые проведены in situ высокотемпературные дифракционные исследования функционирующей МТ мембраны.

7.1. Методика эксперимента

Для данного эксперимента был использован реактор, представленный на рис. 53 (справа), который был закреплен в дифрактометре Bruker D8, оборудованном зеркалом Гёбеля. Схема экспериментальной установки приведена на рис. 55 (слева).

Рис. 55. (слева) Схема установки для in situ дифракционных экспериментов по кислородной проницаемости. 1 – реактор; 2 – детектор; 3 – источник рентгеновского излучения; 4 – пирометр; 5 – регулятор тока; 6 – смеситель газов. (справа) Схема реактора для in situ дифракционных экспериментов по кислородной проницаемости.

Схема камеры состоит из дюралевого корпуса (1) с патрубками для подачи (1а, в) и отвода газов (1б, г) внутрь и снаружи МТ, в котором размещены МТ BSCFW2 мембраны (7). С каждой стороны мембраны вставляются полимерные трубки, а места соединений герметизируются термообжимами. Таким образом, обеспечивается герметичность каналов подачи (1а) и отвода газов (1б). Посредством нанесенного токопроводящего покрытия (8), обеспечивается надежный контакт между МТ
мембраной (7) и источником переменного электрического тока (5). С помощью инфракрасного пирометра (4) IMPAC IGA 300 (диапазон рабочих температур 400–1500°C, фокусное расстояние 250 мм, ширина метки 2,0 мм) определяли температуру непосредственно образца с точностью 0,1°. При помощи регулятора тока (5) производится управляемый нагрев образца, обеспечивающий необходимый температурный режим в ходе эксперимента. Регулирование газовых потоков осуществляется при помощи смесителя газов УФПГС-4 (СоЛО, Новосибирск) (6). Методика регистрации и расчета потоков кислорода на выходе из реактора аналогична методике, представленной в главе 4.1.

7.2. Изучение структурно-фазового состояния MT BSCFW2 мембраны

Эксперимент по изучению структуры MT BSCFW2 мембраны в рабочих условиях проводили следующим образом: с внешней и внутренней стороны мембраны подавали искусственный воздух (0,21 атм O₂ в N₂) и гелий марки «А» (рO₂~10⁻⁶ атм.), соответственно. Скорость внешнего обдува мембраны всегда была равной 200 мл/мин, тогда как скорость внутреннего потока варьировали. Нами были проведены две серии экспериментов.

В первой серии (рис. 56) (которую обозначим «воздух-гелий») вначале с внешней (200 мл/мин) и внутренней (50 мл/мин) сторон MT мембраны подавали искусственный воздух (режим воздух-воздух 50) и при помощи регулятора тока нагревали мембрану до рабочей температуры. Затем с внутренней стороны подавали гелий (режим воздух-гелий) с разной скоростью (25, 50, 75 мл/мин).

Во второй серии (рис. 57) экспериментов (которую обозначим «гелий-воздух») вначале с внешней (200 мл/мин) и внутренней (50 мл/мин) сторон MT мембраны подавали чистый гелий (режим гелий-гелий 50). Затем с внутренней стороны подавали воздух (режим гелий-воздух) с разной скоростью (25, 50, 75 мл/мин).

Каждый раз при достижении мембраной равновесия при заданных рO₂, T (о чем судили по отсутствию изменений в положении рефлексов), производили съемку диффрактограмм в диапазоне углов 2θ=20–70° с последующим определением
структурных параметров при помощи полнопрофильного анализа Ритвельда на программе TOPAS.

Как видно из рисунка 57 подача кислорода на внутреннюю поверхность мембраны (в данном случае, питающую сторону) приводила к значительному уменьшению
параметра ячейки BSCFW2 материала с внешней стороны мембраны (проницаемая сторона). При этом зависимость параметров решетки от температуры описывалась линейной функцией (на рис. 56 для BSCFW2 материала, нагреваемого при \(pO_2=0,21 \) атм).

На рис. 58 приведены структурные данные, полученные при различных температурах в двух сериях экспериментов. Кроме того, на график нанесены структурные данные для порошка размолотой MT BSCFW2 мембраны, отснятые на воздухе и в динамическом вакууме (\(pO_2\sim10^{-6} \) атм). Как видно из рисунка, за исключением данных полученных в режиме гелий-гелий 50 и для порошков BSCFW2 в вакууме, все остальные точки укладываются на прямую полученную в режиме воздух-воздух 50 для мембран и порошка BSCFW2, отснятого на воздухе.

Таким образом, внешняя поверхность мембраны имеет структуру близкую (в пределах погрешности измерения) к структуре порошка BSCFW2, находящегося в равновесии с воздухом (\(pO_2=0,21 \) атм), не только в случае, когда внутри мембраны продувается воздух, но и когда продувается гелием с различной скоростью (рис. 56). Более того, структура внешней поверхности мембраны слабо отличается от структуры порошка BSCFW2, находящегося в равновесии с воздухом (\(pO_2=0,21 \) атм) даже в режиме гелий-воздух (рис. 57), т.е., когда внешняя поверхность обдувается гелием со скоростью 200 мл/мин, при условии, что внутри мембраны \(pO_{2,1}\sim0,2 \) атм.

Таким образом, структура материала работающей MT BSCFW2 мембраны при фиксированной температуре определяется парциальным давлением кислорода \(pO_{2,1} \) с питающей стороны. Этот вывод имеет важные следствия.

Во-первых, на основании полученных данных профиль химического потенциала кислорода \(\mu O_2 \) вдоль мембраны имеет вид, представленный на рис. 59 справа. Это свидетельствует о том, что для MT BSCFW2 мембран лимитирующей стадией кислородной проницаемости является десорбция кислорода с проницаемой стороны мембраны (со стороны низкого парциального давления кислорода).
Рис. 58. Результаты *in situ* дифракционных измерений функционирующей MT BSCFW2 мембраны. Сплошными линиями соединены данные порошковой дифракции размолотой MT BSCFW2 мембраны.

Рис. 59. Профиль химического потенциала кислорода вдоль MT BSCFW2 мембраны.

Во-вторых, стабильность материала мембраны в этом случае определяется *pO*_{2,1}, *T* параметрами (рис. 59 слева), которые существенно менее жесткие чем с проницаемой стороны. Это значит, что требования к материалам MT мембран по стабильности в низких *pO*₂ могут быть значительно ослаблены и расхожее представление о том, что мембранные материалы на основе ферритов предпочтительнее, чем кобальтиты, имеет
смысл только в случае достаточно толстостенных мембран, в которых лимитирующей стадией является объемная диффузия.

7.3. Заключение к главе

Использование прямого нагрева мембран электрическим током открывает доступ к поверхности работающей мембраны, и, следовательно, делает возможным in situ исследования механизма кислородной проницаемости различными физико-химическими методами.

На основании полученных данных показано, что структура MT BSCFW2 мембраны определяется pO_2, T параметрами, т.е. парциальным давлением кислорода с питательной стороны и лимитирующей стадией кислородной проницаемости является десорбция кислорода с проницаемой стороны мембраны (со стороны низкого парциального давления кислорода).
Заключение

В диссертационной работе проведены исследования влияния высокозарядного катиона W\(^{6+}\) на физико-химические свойства нестехиометрического оксида Ba\(_{0.5}\)Sr\(_{0.5}\)Co\(_{0.8}\)Fe\(_{0.2}\)O\(_{3-\delta}\) со смешанной кислород-электронной проводимостью, обладающего рекордно высокими транспортными характеристиками. Для модификации BSCF перовскита в качестве высокозарядного сегнетоактивного допанта был выбран вольфрам (VI), что позволило подавить нежелательный фазовый переход в гексагональную модификацию, а также, благодаря кислотным свойствам его оксида WO\(_3\), положительно повлияло на стабильность материала в атмосфере, содержащей CO\(_2\).

В работе проведен синтез и исследование образцов состава Ba\(_{0.5}\)Sr\(_{0.5}\)Co\(_{0.8-x}\)W\(_x\)Fe\(_{0.2}\)O\(_{3-\delta}\) (x=0–0.1). Показано, что введение высокозарядного катиона W\(^{6+}\) в В-позицию, до 2% включительно, подавляет переход «кубический–гексагональный» перовскит, который характерен для BSCF при температурах ниже 850°C.

Изучение высокотемпературного квазиравновесного выделения кислорода из нестехиометрических перовскитов состава Ba\(_{0.5}\)Sr\(_{0.5}\)Co\(_{0.8}\)Fe\(_{0.2}\)O\(_{3-\delta}\) и Ba\(_{0.5}\)Sr\(_{0.5}\)Co\(_{0.78}\)W\(_{0.02}\)Fe\(_{0.2}\)O\(_{3-\delta}\) позволило получить равновесные данные по кислородной нестехиометрии данных перовскитов в виде непрерывной функции от парциального давления кислорода в диапазоне температур 600–900°C. Благодаря детальным фазовым диаграммам, полученным на основе непрерывных зависимостей кислородной нестехиометрии от парциального давления кислорода показано наличие двухфазной области «P\(^1\)-P\(^2\)» и рассчитаны термодинамические параметры изученных систем.

Изучена селективная кислородная проницаемость газоплотных дисковых мембран, изготовленных из перовскитов состава Ba\(_{0.5}\)Sr\(_{0.5}\)Co\(_{0.8}\)Fe\(_{0.2}\)O\(_{3-\delta}\) и Ba\(_{0.5}\)Sr\(_{0.5}\)Co\(_{0.78}\)W\(_{0.02}\)Fe\(_{0.2}\)O\(_{3-\delta}\). Показано, что частичное изоморфное замещение ионов кобальта двумя процентами высокозарядного сегнетоактивного катиона вольфрама (VI) существенно улучшает функциональные свойства мембранного материала; подавляет деградацию мембраны в атмосфере, содержащей CO\(_2\); повышает стабильность и величины кислородных потоков дисковых мембран. Согласно проведенным исследованиям на дисковых мембранах различной толщины...
лимитирующей стадией кислородного транспорта в \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta} \) и \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\delta} \) перовскитах является объемная диффузия оксид ионов.

Разработана модель кислородной проницаемости в микротрубчатых мембранах, которая учитывает градиент парциального давления кислорода вдоль мембраны.

В работе методом фазовой инверсии на основе связок \(\text{N}-\text{метилпирролидон/полисульфон (НМП/ПС)} \) и \(\text{диметилсульфоксид/ацетилцеллюлоза (ДМСО/АЦ)} \) были получены высокопористые микротрубчатые мембраны с тонким газоплотным слоем с внутренней стороны.

Тестирование кислородпроводящей мембраны в течение длительного времени продемонстрировало стабильность кислородных потоков мембраны и структурных параметров материала. Исследования зависимости кислородных потоков от парциального давления кислорода и температуры показали, что в интервале температур 800–900\(^{\circ}\)C лимитирующей стадией кислородного транспорта в микротрубчатых мембранах состава \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\delta} \) является кислородный обмен на поверхности мембраны с энергией активации равной 110±10 кДж/моль.

Разработан новый способ активации кислородных потоков путем пропускания электрического тока через мембраны. Показано, что использование прямого нагрева микротрубчатых мембран переменным током:

- обеспечивает равномерный и эффективный прогрев всей мембраны и приводит к более высокой производительности мембран.

- снимает поляризацию электродов и предотвращает разрушение материала мембраны под действием электрического тока. Тест MT BSCFW2 мембран, нагретых переменным током в течение 30 дней, подтверждает стабильность MT мембран при таком способе нагрева.

- обеспечивает более высокую энергоэффективность процесса сепарации кислорода в мембранном реакторе.

- позволяет заметно уменьшить время запуска устройства и инерционность при регулировании температурного режима.
- позволяет упростить дизайн реактора; в такой конструкции мембраны одновременно исполняют роль селективных сепараторов кислорода и нагревательных элементов, обеспечивающих необходимую температуру мембраны.

В работе изучена кислородная проницаемость $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\delta}$ микротрубчатых мембран, полученных с различными полимерными связующими. Использование полимерного связующего не содержащего серу позволяет увеличить кислородные потоки и снизить энергию активации процесса кислородного обмена с 80±5 до 60±10 кДж/моль.

Использование прямого нагрева мембран электрическим током открывает доступ к поверхности работающей мембраны, и, следовательно, делает возможным in situ исследования механизма кислородной проницаемости различными физико-химическими методами.

На основании полученных данных схематически представлен профиль химического потенциала кислорода вдоль МТ мембраны, который свидетельствует о том, что для МТ BSCFW2 мембран лимитирующей стадией кислородной проницаемости является десорбция кислорода с проницаемой стороны мембраны (со стороны низкого парциального давления кислорода).

Полученная информация о влиянии допирования высоко-зарядным катионом W^{6+} в B-положение СКЭП оксида, может быть полезна для дальнейшего создания мембранных материалов с улучшенными характеристиками, а синтезированный и исследованный материал $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\delta}$ превосходит состав $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta}$, как в стабильности, так и кислородной проницаемости.
Выводы

1. Для системы $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8-x}\text{W}_{x}\text{Fe}_{0.2}\text{O}_{3-\delta}$ (BSCFWx) определен предел растворимости вольфрама равный 2%. Показано, что допирование BSCF вольфрамом:

- подавляет переход кубической фазы в гексагональную;
- повышает устойчивость мембран к атмосфере, содержащей CO$_2$;

что повышает значения кислородных потоков на $\sim 15\%$ и стабилизирует работу мембраны в широком диапазоне температур $T=600–950^\circ\text{C}$.

2. Методом квазиравновесного выделения кислорода получены непрерывные равновесные фазовые диаграммы $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta}$ и $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\delta}$ перовскитов, с помощью которых впервые обнаружена узкая двухфазная область изосимметричного перехода низкотемпературной фазы (P^1) в высокотемпературную фазу (P^2). Из равновесных фазовых диаграмм рассчитаны термодинамические параметры исследуемых перовскитов.

3. Изучена кислородная проницаемость $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta}$ и $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\delta}$ дисковых мембран. На основании зависимости кислородных потоков от толщины мембраны показано, что кислородная проницаемость контролируется объемной диффузией оксид-ионов через материал мембраны. Энергия активации в обоих случаях близка к 65±5 кДж/моль, что согласуется с литературными данными для $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta}$ мембран.

4. Изучена кислородная проницаемость $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_{3-\delta}$ микротрубчатых мембран, полученных с различными полимерными связующими. Показано, что кислородные потоки на микротрубчатых мембранах существенно возрастают и контролируются поверхностными процессами кислородного обмена. Использование полимерного связующего, не содержащего серу, позволяет увеличить кислородные потоки и снизить энергию активации процесса кислородного обмена с 80±5 до 60±10 кДж/моль.
5. Разработан способ прямого нагрева микротрубчатых мембран с помощью электрического тока. Показано, что прямой нагрев мембран током позволяет повысить производительность (≈ в 2 раза) и энергоэффективность микротрубчатых мембран.

6. Путем прямого нагрева микротрубчатых мембран впервые проведены in situ высокотемпературные дифракционные исследования рабочей поверхности мембран, которые показали, что структурные параметры материала мембраны определяются значением pO_2 с питающей стороны (стороны с более высоким парциальным давлением кислорода). Впервые экспериментально показано, что лимитирующей стадией кислородной проницаемости на микротрубчатых мембранах состава $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.78}\text{W}_{0.02}\text{Fe}_{0.2}\text{O}_3-\delta$ является десорбция кислорода с проницаемой стороны (стороны с низким парциальным давлением кислорода).
Список литературы

11. Dong X., Liu Z., He Y., Jin W., Xu N. SrAl$_2$O$_4$-improved SrCo$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ mixed-conducting membrane for effective production of hydrogen from methane // J. Membr. Sci. – 2009. – V. 331. – P. 109-116.

18. Chen W., Chen C., Winnbust L. Ta-doped SrCo$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ membranes: phase stability and oxygen permeation in CO$_2$ atmosphere // Solid State Ionics. – 2011. – V. 196. – P. 30-33.

20. Zhang, J., Lu H., Giu J., Kim J., Son S., Park J. Structure, nonstoichiometry, sintering and oxygen permeability of perovskite SrCo$_{1-2x}$(Fe,Nb)$_x$O$_{3-\delta}$ (x=0.05, 0.1) oxides // Mater. Sci. Eng. B. – 2013. – V. 178. – P. 443-448.

21. Shao Z.P., Yang W.S., Cong Y., Dong H., Tong J.H., Xiong G.X. Investigation of the permeation behavior and stability of a Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ oxygen membrane // J. Membr. Sci. – 2000. – V. 172. – P. 177-188.

25. Grunbaum N., Mogni L., Prado F., Caneiro A. Phase equilibrium and electrical conductivity of SrCo$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ // J. Solid State Chem. – 2004. – V. 177. – P. 2350-2357.

31. Mizusaki J., Hasegawa M., Yashiro K., Matsumoto H., Kawada T. Nonstoichiometry of the perovskite-type solid solution La$_{0.9}$Ca$_{0.1}$Cr$_{1-y}$Al$_y$O$_3$ // Solid State Ionics. – 2006. – V. 177. – P. 1925-1928.

36. McIntosh S., Vente J.F., Haije W.G., Blank D.H.A., Bouwmeester H.J.M. Oxygen stoichiometry and chemical expansion of Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-δ}$ measured by in situ neutron diffraction // Chem. Mater. – 2006. – V. 18. – P. 2187-2193.

39. Yang N.-T., Kathiraser Y., Kawi S. A new asymmetric SrCo_{0.8}Fe_{0.1}Ga_{0.1}O_{3-δ} perovskite hollow fiber membrane for stable oxygen permeability under reducing condition // J. Membr. Sci. – 2013. – V. 428. – P. 78-85.

40. Wang, L. Ba_{1-x}Sr_xCo_yFe_{1-y}O_{3-δ} SOFC cathode materials: bulk properties, kinetics and mechanism of oxygen reduction, дис. … канд. хим. наук, 18.12.2009 // L. Wang. Научно-исследовательский институт химии твердого тела им. Макса Планка.

41. Wang H., Cong Y., Yang W. Oxygen permeation study in a tubular Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} oxygen permeable membrane // J. Membr. Sci. – 2002. – V. 210. – P. 259-271.

42. Buysse C., Kovalevsky A., Snijkers F., Buekenhoudt A., Mullens S., Luyten J., Kretzschmar J., Lenaerts S. Fabrication and oxygen permeability of gastigh, macrovoid-free Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-x} capillaries for high temperature gas separation // J. Membr. Sci. – 2010. – V. 359. – P. 86-92.

48. Kim S., Yang Y.L., Christoffersen R., Jacobson A.J. Oxygen permeation, electrical conductivity and stability of the perovskite oxide La$_{0.2}$Sr$_{0.8}$Cu$_{0.4}$Co$_{0.6}$O$_{3-x}$ // Solid State Ionics. – 1997. – V. 104. – P. 57-65.

50. Tan L., Yang L., Gu X., Jin W., Zhang L., Xu N., Structure and oxygen permeability of Ag-doped SrCo$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ oxides // AIChE Journal. – 2004. V. 50. No. 3.

52. Van Doorn R.H.E., Bouwmeester H.J.M., Burggraaf A.J. Kinetic decomposition of La$_{0.3}$Sr$_{0.7}$CoO$_{3-\delta}$ perovskite membranes during oxygen permeation // Solid State Ionics. – 1998. – V. 111. – P. 263-272.

53. Kharton V.V., Kovalevsky A.V., Maxima F., Shaula A.L., Frade J.R. Processing and characterization of La$_{0.5}$Sr$_{0.5}$FeO$_{3}$-supported Sr$_{1-x}$Fe(Al)O$_{3}$ - SrAl$_2$O$_4$ composite membranes. // J. Membrane Sci. – 2006. – V. 278. – P. 162-172.

54. Kharton V.V., Kovalevsky A.V., Viskup A.P., Jurado J.R., Figueiredo F.M., Naumovich E.N., Frade J.R. Transport properties and thermal expansion of Sr$_{0.97}$Ti$_{1.3}$Fe$_{x}$O$_{3-\delta}$ ($x=0.2-0.8$) // J. Solid State Chem. – 2001. – V. 156. – P. 437-444.

59. Sun S. M., Rebeilleau-Dassonneville M., Zhu X. F., Chu W. L., Yang W. S. Ammonia oxidation in Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane reactor // Catal. Today. – 2010. – V. 149. – P. 167-171.

62. Liu B., Zhang Y., Zhang L. Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for solid oxide fuel cell // Int. J. Hydr. En. – 2009. – V. 34. – P. 1008-1014.

64. Mueller D.N., De Souza R.A., Weirich T.E., Roehrens D., Mayer J., Martin M. A kinetic study of the decomposition of the cubic perovskite-type oxide Ba0.5Sr1.4Co0.8Fe0.2O3-δ (BSCF) (x=0.1 and 0.5) // Phys. Chem. Chem. Phys. – 2010. – V. 12. – P. 10320-10328.

66. Müller P., Störmer H., Meffert M., Dieterle L., Niedrig C., Wagner S.F., Ivers-Tiffée E., Gerthsen D. Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3-δ studied by electron microscopy // Chem. Mater. – 2013. – V. 25. – P. 564-573.

70. McIntosh S., Vente J. F., Haije W. G., Blank D. H. A., Bouwmeester H. J. M. Phase stability and oxygen nonstoichiometry of SrCo$_{0.8}$Fe$_{0.2}$O$_3$–\(\delta\) measured by \textit{in situ} neutron diffraction // Chem. Mater. – 2006. – V. 18. – P. 2187-2193.

73. Kovalevsky A., Buysse C., Snijkers F., Buekenhoudt A., Luyten J., Kretschmar J., Lenaerts S. Oxygen exchange-limited transport and surface activation of Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ capillary membranes // J. Membr. Sci. – 2011. – V. 368. – P. 223-232.

74. Martynczuk J., Arnold M., Wang H., Caro J., Feldhoff A. How Ba$_{0.5}$Sr$_{0.5}$Fe$_{0.8}$Zn$_{0.2}$O$_{3-\delta}$ and Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ perovskites form via an EDTA/citric acid complexing method // Adv. Mater. – 2007. – V.19. – P. 2134-2140.

75. Kozhemyachenko A. S., Nemudry A. P. Investigation of the functional characteristics of perovskites SrCo$_{0.8}$Fe$_{0.2}$Nb$_{0.2}$O$_{3-\delta}$ // Chemistry for Sustainable Development. – 2010. – V. 18. – P. 649-655.
76. Starkov I. A., Kozhemyachenko A. S., Bychkov S. F., Nemudry A. P., Lyakhov N. Z. Study of high temperature oxygen permeability in Sr$_{1-x}$La$_x$Co$_{0.8-y}$Nb$_y$Fe$_{0.2}$O$_{3-z}$ perovskites // Bulletin of the Russian Academy of Sciences: Physics. – 2010. – V. 74, № 8. – P. 1059-1061.

77. Liu Y., Zhu X., Li M., O’Hayre R.P., Yang W. Nanoparticles at grain boundaries inhibit the phase transformation of perovskite membrane // Nanolett. – 2015. – DOI: 10.1021/acs.nanolett.5b03668

78. Shao Z., Xiong G., Tong J., Dong H., Yang W. Synthesis, oxygen permeation study and membrane performance of a Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas // Sep. Pur. Tech. – 2001. – V. 25. – P. 419-429.

80. Leo A., Liu S., Diniz da Costa J.C. The enhancement of oxygen flux on Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ (BSCF) hollow fibers using silver surface modification // J. Membr. Sci. – 2009. – V. 340. – P. 148-153.

81. Yakovlev S., Yoo C.Y., Fang S., Bouwmeester H. J. M. Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ perovskite oxide probed by electrical conductivity relaxation // Appl. Phys. Lett. – 2010. – V. 96. – P. 25-29.

82. Belenkaya I. V., Matvienko A. A., Nemudry A. P. Phase transitions and microstructure of ferroelastic MIEC oxide SrCo$_{0.8}$Fe$_{0.2}$O$_{2.5}$ doped with highly charged Nb/Ta(V) cations // J. Mater. Chem. A. – 2015. – V. 3. – P. 23240-23251.

84. Lein H. L., Andersen Ø. S., Vullum P. E., Lara-Curzio E., Holmestad R., Einarsrud M.-A., Grande T. Mechanical properties of mixed conducting La$_{0.5}$Sr$_{0.5}$Fe$_{1-x}$Co$_{x}$O$_{3-\delta}$ (0≤x≤1) materials // J. Solid State Electrochem. – 2006. – V. 10. – P. 635-642.

86. Belenkaya I.V., Matvienko A.A., Nemudry A.P. Domain structure of ferroelastic SrCo_{0.8}Fe_{0.2}O_{2.5} with mixed ion-electron conductivity // Doklady Physical Chemistry. – 2014. – V. 458, № 1. – P. 138-141.

87. Belenkaya I., Matvienko A., Nemudry A. Ferroelasticity of SrCo_{0.8}Fe_{0.2}O_{3-δ} perovskite-related oxide with mixed ion-electron conductivity // J. Appl. Cryst. – 2015. – V. 48. – P. 179-188.

90. Belenkaya I. V., Matvienko A. A., Nemudry A. P. Phase transitions and microstructure of ferroelastic MIEC oxide SrCo_{0.8}Fe_{0.2}O_{2.5} doped with highly charged Nb/Ta(V) cations // J. Mater. Chem. A. – 2015. – V. 3. – P. 23240-23251.

92. Старков И.А., Кожемяченко А.С., Бычков С.Ф., Немудрый А.П., Ляхов Н.З. Изучение высокотемпературной кислородной проницаемости в перовских Сr_{1-x}La_{x}Co_{0.8}Fe_{0.2}O_{3-δ} // Известия Российской академии наук: Серия физическая. – 2010. – Т. 74. – С. 1108-1110.

93. Bucher E., Egger A., Ried P., Sitte W., Holtappels P. Oxygen nonstoichiometry and exchange kinetics of Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} // Solid State Ionics. – 2008. – V. 179. – P. 1032-1035.

