На правах рукописи Junoppub.

Григорьев Максим Владимирович

СИНТЕЗ, КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ И СВОЙСТВА СЕЛЕНИДОВ Eu*RE*CuSe₃ (*RE* – РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ)

1.4.15. Химия твердого тела

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Новосибирск – 2023

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Тюменский государственный университет», г. Тюмень.

Научный руководитель:	кандидат химических наук Русейкина Анна Валерьевна				
Официальные оппоненты:	Жихарева Ирина Георгиевна, доктор химических наук, профессор, ФГБОУ ВО «Тюменский индустриальный университет» (г. Тюмень), профессор кафедры общей и физической химии				
	Верченко Валерий Юрьевич, кандидат химических наук, ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова» (г. Москва), старший научный сотрудник кафедры неорганической химии				
Ведущая организация:	Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента				

Защита диссертации состоится «28» февраля 2024 г. в 14:00 на заседании диссертационного совета 24.1.148.01 в Институте химии твёрдого тела и механохимии Сибирского отделения РАН по адресу: 630090, г. Новосибирск, ул. Кутателадзе, 18.

России Б.Н. Ельцина», г. Екатеринбург

С диссертацией можно ознакомиться в библиотеке и на сайте Института химии твёрдого тела и механохимии СО РАН: http://www.solid.nsc.ru.

Автореферат разослан «____» января 2024 г.

Ученый секретарь диссертационного совета, д.х.н.

Masty

Шахтшнейдер Татьяна Петровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

В настоящее время активно ведутся исследования четверных халькогенидов, входящих в семейство AMM'Ch₃ (A – s- или f-элемент, M – d- или f-элемент, M' – d-элемент, Ch – халькоген), известно уже более 200 соединений. Идея объединить большое количество соединений в одно семейство впервые была предложена Ibers [1]. Наибольший интерес представляют соединения AREM'Ch₃ (A = Sr, Eu, Ba; RE = La – Lu, Sc, Y; M' = Cu, Ag; Ch = S, Se, Te) ввиду их тепловых, электрических и оптических свойств, которые делают их перспективными материалами для инфракрасной и нелинейной оптики.

Развитие электронных технологий открыло перспективы применения поглотителей медьсодержащих селенидов как В тонкопленочных фотоэлектрических высокоэффективных термоэлектрических элементах И материалах [2]. Четверные селениды, включающие медь и редкоземельные элементы, представляют особый интерес из-за множества различных комбинаций катионов, которые позволяют варьировать структурный тип, ширину запрещенной электрические и оптические характеристики. На основе 30НЫ, а также первопринципных расчетов спрогнозирована низкая решеточная теплопроводность термодинамически стабильных слоистых четверных халькогенидов AREM'Ch₃ [2]. Последние исследования четверных халькогенидов в области фотовольтаики продемонстрировали перспективность их использования в качестве транспортного слоя в солнечных элементах, что приводит к увеличению в 1,5 раза напряжения холостого хода, плотности тока короткого замыкания и КПД [3].

Разработанность темы исследования

На момент начала научного исследования в литературных источниках не было обнаружено информации об успешных попытках синтеза четверных селенидов европия Eu*RE*CuSe₃. Соответственно, отсутствовала информация о кристаллической структуре, а также магнитных и оптических свойствах данных соединений.

В конце 2020 года были проведены DFT-расчеты исследовательской группой из Северо-Западного университета (США). В теоретических расчетах были представлены вероятные структурные типы (СТ) соединений, пространственные группы (пр.гр.) и значения ширины запрещенной зоны (таблица 1) [2].

Соединение	СТ	Пр.гр.	Ширина запрещенной зоны (эВ)
1	2	3	4
EuLaCuSe ₃	BaLaCuS ₃	Pnma	0.94
EuCeCuSe ₃	BaLaCuS ₃	Pnma	0.91
EuPrCuSe ₃	BaLaCuS ₃	Pnma	0.95
EuNdCuSe ₃	KZrCuSe ₃	Cmcm	0.98

Таблица 1. – DFT-расчеты возможных структурных типов в ряду EuRECuSe₃

1	2	3	4
Eu ₂ CuSe ₃	KZrCuSe ₃	Cmcm	1.00
EuSmCuSe ₃	KZrCuSe ₃	Cmcm	1.04
EuGdCuSe ₃	KZrCuSe ₃	Cmcm	0.96
EuTbCuSe ₃	KZrCuSe ₃	Cmcm	1.11
EuDyCuSe ₃	KZrCuSe ₃	Cmcm	1.02
EuHoCuSe ₃	KZrCuSe ₃	Cmcm	1.04
EuYCuSe ₃	KZrCuSe ₃	Cmcm	1.07
EuErCuSe ₃	KZrCuSe ₃	Cmcm	1.06
EuTmCuSe ₃	KZrCuSe ₃	Cmcm	1.09
EuLuCuSe ₃	KZrCuSe ₃	Cmcm	1.13
EuScCuSe ₃	NaCuTiS ₃	Pnma	0.82

На момент публикации статьи исследователей из США в рамках диссертационной работы уже были получены первые образцы соединений и расшифрована их кристаллическая структура, а также определены значения ширины запрещенной зоны. Были обнаружены различия между теоретическими расчетами и экспериментальными данными. Для Eu*RE*CuSe₃ были предсказаны три структурных типа, а именно: KZrCuSe₃ (*RE* = Nd–Lu, Y), BaLaCuS₃ (*RE* = La–Pr) и NaCuTiS₃ для EuScCuSe₃ (таблица 1). Однако для первого синтезированного селенида Eu⁺²Eu⁺³Cu⁺¹Se⁻²₃ из ряда Eu*RE*CuSe₃ по данным монокристальной рентгеновской дифракции был установлен структурный тип Eu₂CuS₃ с параметрами элементарной ячейки (э.я.): *a* = 10.773(7) Å, *b* = 4.134(3) Å, *c* = 13.466(9) Å. Это соединение синтезировалось из элементарных европия и селена в течение 400 ч [4].

Для ряда селенидов SrRECuSe₃ (RE = La-Lu, Y, Sc) экспериментально установлено существование трех структурных типов: Ba₂MnS₃, Eu₂CuS₃ и KZrCuS₃. В соединениях EuRECuSe₃ и SrRECuSe₃ катионы Eu²⁺ и Sr²⁺ имеют близкие ионные радиусы ($rEu^{2+} = 1.17$ Å, $rSr^{2+} = 1.18$ Å, координационное число (KЧ) = 6). Таким образом, ожидаются сходные структурные типы для селенидов EuRECuSe₃. В диссертационной работе большое внимание уделяется поиску наиболее эффективного синтетического подхода, определению кристаллической структуры, оптических и магнитных свойств.

Цель работы – разработка способов синтеза четверных гетерометаллических селенидов $EuRECuSe_3$ (RE = La-Lu, Sc, Y), решение и уточнение их кристаллических структур, исследование магнитных и оптических свойств.

Для достижения поставленной цели были сформулированы следующие задачи:

1. Разработать способы синтеза поликристаллических и монокристальных образцов четверных селенидов $EuRECuSe_3$ (RE = La-Lu, Sc, Y).

2. Установить кристаллическую структуру образцов методами порошковой и монокристальной рентгеновской дифракции. Определить закономерности изменения структурных параметров от радиуса редкоземельного иона.

3. Провести DFT-расчеты кристаллических и зонных структур, фононных спектров кристаллов Eu*RE*CuSe₃.

4. Исследовать оптические свойства соединений методами спектроскопии комбинационного рассеяния, ИК- и УФ-спектроскопии. Интерпретировать экспериментальные ИК- и КР-спектры селенидов с привлечением *ab initio* расчетов.

5. Исследовать температурные и полевые зависимости магнитной восприимчивости четверных селенидов.

Научная новизна

1. разработан способ синтеза поликристаллических образцов Впервые $EuRECuSe_3$ (RE = La, Ce, Sm, Gd–Lu, Y), заключающийся в восстановительном оксидной смеси, полученной термолизом селенидировании совместно закристаллизованных нитратов металлов (патент N⁰ RU2783926C1). Оптимизированы условия синтеза монокристаллических образцов EuRECuSe₃ (RE = Pr, Nd, Sc) методом галогенидного флюса.

2. Впервые получены соединения EuRECuSe₃ ромбической сингонии с симметрией *Pnma*: EuLaCuSe₃ (CT Ba₂MnS₃), EuCeCuSe₃ (CT BaLaCuS₃) и EuRECuSe₃ (RE = Pr-Ho, Y) (CT Eu₂CuS₃) и с симметрией *Cmcm*: EuRECuSe₃ (RE = Tm-Lu, Sc) (CT KZrCuS₃). Установлены закономерности изменения структурных параметров, степени искажения координационных полиэдров в зависимости от ионного радиуса редкоземельного металла в соединениях EuRECuSe₃. Показано, что с уменьшением ионного радиуса RE^{3+} в соединениях EuRECuSe₃ уменьшаются объем э.я., длина связи d(RE-Se), координационное насыщение RE^{3+} , степень искажения CuSe₄, а также уменьшение rRE^{3+} приводит к кристаллохимическому сжатию слоев [$RECuSe_3$]²⁻ и смене координационного полиэдра Eu²⁺. В ряду соединений EuRECuSe₃ впервые обнаружено постепенное формирование более симметричной структуры, происходящее в результате последовательной смены структурных типов: Ba₂MnS₃ \rightarrow BaLaCuS₃ \rightarrow Eu₂CuS₃ \rightarrow KZrCuS₃. Наибольшая степень искажения CuSe₄ характерна для Ce³⁺–содержащего селенида.

3. Впервые изучены магнитные свойства $EuRECuSe_3$ (RE = La-Lu). Обнаружено, что соединения с RE = Gd, Tb, Dy, Ho, Tm претерпевают ферримагнитый переход при 4.5–6.3 K, а соединения $EuRECuSe_3$ (RE = La-Nd, Sm, Yb–Lu, Y, Sc) переходят в ферромагнитное состояние при температуре около 4 K. Установлено, что соединение $EuHoCuSe_3$ является ферримагнетиком N-типа по Неелю, проявляет эффект отрицательного намагничивания при температурах ниже 4.8 K.

4. Впервые проведены DFT-расчеты кристаллических и зонных структур, спектров Eu*RE*CuSe₃. Определены типы фононных И волновые числа фундаментальных Оценено участие мод. ионов В фононных модах. Интерпретированы экспериментальные ИК- и КР-спектры селенидов.

5. Впервые установлены экспериментальные значения ширины запрещенной зоны Eu*RE*CuSe₃. Проведено их сравнение со значениями, полученными в ходе *ab initio* расчетов.

Теоретическая и практическая значимость

Теоретическая значимость работы заключается в разработке нового способа синтеза поликристаллических образцов соединений Eu*RE*CuSe₃ (зарегистрирован патент № RU2783926C1), подборе временных и температурных режимов синтеза монокристальных образцов. Впервые установленные структурные параметры Eu*RE*CuSe₃ были депонированы в Кембриджском центре кристаллографических данных (CCDC): EuLaCuSe₃ (2125819), EuCeCuSe₃ (2189101), EuPrCuSe₃ (2207233), EuNdCuSe₃ (2207234), EuSmCuSe₃ (2125820), EuGdCuSe₃ (2125821), EuTbCuSe₃ (2125822), EuDyCuSe₃ (2125823), EuHoCuSe₃ (2125824), EuTmCuSe₃ (2125825), EuYbCuSe₃ (2125826), EuLuCuSe₃ (2125827), EuScCuSe₃ (2239558), EuYCuSe₃ (2125828).

Практическая значимость определяется тем, что соединения EuRECuSe₃ со значениями ширины запрещенной зоны от 1.19 до 2.09 эВ могут найти применение в качестве полупроводниковых материалов.

Методология и методы исследования

Научное исследование включало в себя получение материалов в виде поликристаллов, а для некоторых соединений монокристаллов, а также изучение их структуры и физико-химических свойств. Синтез поликристаллических соединений осуществлялся по методике, предложенной в патенте «Способ получения селенидов (Sr,Eu)LnCuSe₃ (Ln = La, Nd, Sm, Gd–Lu, Sc, Y)» патент № RU2783926С1. Некоторые соединения, а именно: EuPrCuSe₃, EuNdCuSe₃, были получены флюса. EuScCuSe₃, методом галогенидного Метолы рентгенофазового и рентгеноструктурного анализов были использованы для идентификации примесных фаз и установления кристаллической структуры; метод растровой электронной микроскопии – для исследования микроструктуры; метод энергодисперсионной рентгеновской спектроскопии – для изучения элементного состава образцов; методы инфракрасной спектроскопии и спектроскопии комбинационного рассеяния регистрации ИК-_ для И КР-спектров, соответственно; метод ультрафиолетовой спектроскопии – для определения ширины запрещенной зоны полупроводниковых соединений; метод СКВИДмагнитометрии – для установления магнитных характеристик и вида упорядочения доменов в структуре соединений; метод функционала плотности – для расчета кристаллической, зонной структуры, фононных спектров, интерпретации ИК- и КР-спектров образцов.

Положения, выносимые на защиту

1. Разработан новый способ синтеза соединений $EuRECuSe_3$ (RE = La, Ce, Sm, Gd–Lu, Y) в потоке селенидирующих газов. Оптимизированы временные и температурные режимы синтеза монокристальных образцов $EuRECuSe_3$ (RE = Pr, Nd, Sc) методом галогенидного флюса.

2. Определена кристаллическая структура соединений Eu*RE*CuSe₃ (RE = La–Lu, Sc, Y). Показано изменение структурных параметров в ряду изоструктурных соединений Eu*RE*CuSe₃, их зависимость от изменения ионного радиуса RE^{3+} , формирование наиболее симметричной структуры.

3. Установлено, что соединения $EuRECuSe_3$ проявляют парамагнитные свойства в диапазоне от температуры Кюри до 300 К. Для образцов EuTbCuSe_3, EuDyCuSe_3, EuGdCuSe_3 и EuTmCuSe_3 характерно ферримагнитное упорядочение при 4.5-6.3 К. Для соединений EuHoCuSe_3 установлен ферримагнетизм N-типа по Неелю, проявление эффекта отрицательного намагничивания при температурах ниже 4.8 К. Для соединений EuLaCuSe_3, EuCeCuSe_3, EuYCuSe_3, EuYbCuSe_3, EuLuCuSe_3, EuScCuSe_3 характерно ферромагнитное состояние при температурах около 4 К.

4. Для соединений Eu*RE*CuSe₃ экспериментально определены значения ширины запрещенной зоны, которые находятся в интервале от 1.19-2.09 эВ. Установлено наличие прямой запрещенной зоны у соединений Eu*RE*CuSe₃ (RE = La-Nd, Sm, Gd-Ho, Y с пр.гр. *Рпта* и непрямой запрещенной зоны для соединений Eu*RE*CuSe₃ (RE = Tm-Lu, Sc) с пр.гр. *Стст*.

Достоверность результатов исследования обеспечена использованием комплекса аттестованных высокоточных современных приборов и взаимодополняющих физико-химических методов исследования состава, структуры и свойств материалов, воспроизводимостью результатов, а также соответствием результатов, полученных с помощью различных методов.

Апробация работы

В рамках диссертационной работы опубликовано 20 работ, в том числе 3 статьи в рецензируемых изданиях, входящих в системы цитирования Web of Science и Scopus. Полученные результаты были представлены на Международном симпозиуме «Перспективные материалы и технологии» (Минск, 23-27 августа 2021 г.); X Международной школе «Физическое материаловедение» (Тольятти, 13-17 сентября 2021 г.); Девятой Международной конференции «Кристаллофизика и деформационное поведение перспективных материалов» (Москва, 22-26 ноября 2021 г.); Научно-практической конференции «Редкие металлы и материалы на их основе: технологии, свойства и применение», «Сажинские чтения» (Москва, 9-10 декабря 2021 г.); Шестой Международной конференции «Advances in synthesis and 26-30 сентября 2022 г.); Международной научноcomplexing» (Москва, конференции «Интеграция практической онлайн науки, образования И производства – основа реализации Плана нации» (Караганда, 16-17 июня 2022 г.); Всероссийской конференции «Химия твердого тела и функциональные материалы-2022» и XIV симпозиуме «Термодинамика и материаловедение» (Екатеринбург, 10-13 октября 2022 г.); XXXII Российской молодёжной научной международным участием «Проблемы конференции c теоретической И экспериментальной химии» (Екатеринбург, 19-22 апреля 2022 г.); VI Школеконференции молодых учёных «Неорганические соединения и функциональные ICFM-2022 (Новосибирск. 27-28 сентября 2022 материалы» г.): XII Международной конференции «Фазовые превращения и прочность кристаллов» (Черноголовка, 24-28 октября 2022 г.). Автором диссертации совместно с соавторами опубликован патент № RU2783926C1 по способу синтеза соединений Eu*RE*CuSe₃ (*RE* = La – Lu, Sc, Y) (дата публикации - 28.11.2022).

Личный вклад автора

В диссертационной работе результаты были получены лично автором или при его непосредственном участии. Поиск и обработка литературных данных проводились лично автором. Диссертант лично проводил синтез и анализ полученных соединений. Обсуждение и оформление результатов в виде научных публикаций проводились совместно с научным руководителем и соавторами.

Часть результатов была получена в рамках гранта № 486 Президента РФ на зарубежную стажировку в Штутгартском университете (Германия). Автор диссертации выражает особую благодарность директору Института химии профессору Томасу Шляйду за возможность проводить эксперименты в течение года в его лабораториях.

Пройдено две стажировки в рамках реализации программы стратегического академического лидерства «Приоритет-2030» по программам «Педагогические и научные компетенции в области рентгеновских исследований» (руководитель стажировки - с.н.с., к.ф.-м.н. Молокеев М.С.) и «Педагогические и научные компетенции в области методов DFT-расчетов» (руководитель стажировки - научный сотрудник к.ф.-м.н. Орешонков А.С.) в Институте физики им. Л. В. Киренского СО РАН (г. Красноярск).

Структура и объем работы

Диссертационная работа состоит из введения, трех глав, заключения, списка сокращений и условных обозначений, приложения и списка литературы. Полный объем диссертации составляет 139 страниц машинописного текста, включая 21 таблицу и 56 рисунков. Библиографический список содержит 128 наименований. Приложение включает 1 рисунок и 21 таблицу.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

<u>Во введении</u> обоснована актуальность диссертационного исследования, сформулированы цель и задачи, описаны научная новизна, методология и методы исследования, теоретическая и практическая значимость полученных результатов, приведены основные положения, выносимые на защиту, а также представлены сведения о личном вкладе автора, апробации и структуре диссертационной работы.

<u>В первой главе</u> представлен литературный обзор по кристаллическим структурам известных представителей семейства соединений AMM'Ch₃. Рассмотрено 7 основных структурных типов, характерных для данного семейства, и их особенности. Представлены структурные карты Магнуса-Гольдшмидта, демонстрирующие наличие данных о структурных типах соединений ARECuCh₃ (A = Eu, Sr, Ba; RE = La-Lu, Sc, Y; Ch = S, Se, Te) и отсутствие сведений о EuRECuSe₃. Для соединений AREM'Ch₃ (A = Eu, Sr, Ba; RE = La-Lu, Sc, Y; M' = Cu, Ag; Ch = S, Se) обобщены литературные сведения об оптических, магнитных, термических и вольтамперных свойствах. Проанализированы все известные методики синтеза подобных соединений, которые могли бы найти применение в данной работе.

<u>Во второй главе</u> описан новый способ синтеза поликристаллических образцов $EuRECuSe_3$ (RE = La, Ce, Sm, Gd–Lu, Y), который заключается в восстановительном селенидировании многокомпонентной оксидной смеси,

полученной термолизом сокристаллизованных нитратов металлов (рис. 1). Селенидирование проводилось при 973–1043 К в течение 2.5–12 ч и при 1173 К в течение 6-12 ч. Выход составил 95.1-100 %. Установлено, что восстановительное селенидирование сложных оксидов уменьшает температурно-временные параметры синтеза четверных селенидов Eu*RE*CuSe₃.

Рисунок 1 – 1 – генератор водорода; 2 – термодат; 3, 6 – печи электронагрева; 4 – селен; 5 – термопара (тип К); 7 – смесь оксидов; 8 – тройник для переключения линий; 9 – угольный фильтр (БАУ); 10 – сосуд с водным раствором CuSO₄

Для получения монокристальных образцов описан метод галогенидного флюса, который позволил выращивать темно-красные игольчатые монокристаллы размером до 300 мкм, условия нагрева и охлаждения представлены на рисунке 2.

Рисунок 2 – Условия нагрева и охлаждения, применяемые в методе галогенидного флюса

Рассмотрены основные методы анализа, используемые в диссертационной работе. Описаны условия проведения рентгеноструктурного анализа, СКВИД-магнитометрии, сканирующей электронной микроскопии, а также ИК-, КР- и УФ- спектроскопии. Указаны программные комплексы, в которых были проведены DFT-расчеты с целью определения наиболее стабильной структуры, фононных спектров.

<u>В третьей главе</u>, состоящей из четырех разделов, представлены результаты исследований и интерпретация экспериментальных данных.

В разделе 3.1 представлены структурные характеристики соединений Eu*RE*CuSe₃ (*RE* = La–Lu, Sc, Y), полученные с помощью DFT-расчетов. Экспериментальные структурные параметры поликристаллических и монокристальных образцов Eu*RE*CuSe₃ (*RE* = La–Lu, Sc, Y) коррелируют с рассчитанными (рис. 3).

Рисунок 3 – Зависимость параметров э.я. от радиуса РЗЭ. Обозначения: черный круг = *a* (*Cmcm*) и *b* (*Pnma*); красный круг = *c* (*Cmcm*) и *a* (*Pnma*); синий круг = *b* (*Cmcm*) и *c* (*Pnma*). Закрашенный круг – теоретические значения, незакрашенный – экспериментальные значения

Все соединения в ряду $EuRECuSe_3$ (RE = La-Lu, Sc, Y) ромбической сингонии кристаллизуются в двух пр.гр.: *Стест* и *Рпта*. Установлено существование четырех различных типов структур (рис. 4), показано их сходство и различие.

При смене CT с Ba_2MnS_3 на $BaLaCuS_3$ и с Eu_2CuS_3 на $KZrCuS_3$, а также в пределах одного структурного типа, наблюдается уменьшение объема э.я. по мере перехода от легких к тяжелым РЗЭ (рис. 5).

Рисунок 4 – Кристаллические структуры соединений EuRECuSe₃

Рисунок 5 – Зависимость объема э.я. от радиуса РЗЭ

Во всем ряду соединений EuRECuSe₃ по мере уменьшения радиуса rRE^{3+} среднее расстояние *RE*–Se постепенно уменьшается с 3.09(7) Å до 2.752(9) Å, в то время как расстояние Cu-Se остается неизменным и составляет 2.46(2)-2.48(3) Å. Октаэдры RESe₆ в CT Eu₂CuS₃ и KZrCuS₃ связаны в слои с искаженными тетраэдрами CuSe₄, и при уменьшении *rRE*³⁺ наблюдается кристаллохимическое слоев. Снижение координационной ЭТИХ насыщенности сжатие катиона лантаноидов приводит к изменению координационного полиэдра (КП). структурного типа и пространственной группы. В частности, изменение КП с одношапочной тригональной призмы RESe7 в EuCeCuSe3 на октаэдр RESe6 в Eu*RE*CuSe₃ (*RE* = Pr–Lu, Y, Sc) приводит к смене CT BaLaCuS₃ на Eu₂CuS₃, а одношапочной тригональной призмы $EuSe_7$ в $EuRECuSe_3$ (RE = La-Ho, Y) на тригональную призму $EuSe_6$ в $EuRECuSe_3$ (RE = Er-Lu, Sc) приводит к смене CT Eu₂CuS₃ на KZrCuS₃. Подобное изменение структурных типов наблюдалось в SrRECuSe₃ и EuRECuS₃ (RE = La–Lu) [1]. Размером катиона RE^{3+} определяется смена структурного типа в EuRECuSe₃.

В структурах Eu*RE*CuSe₃ возможна различная координация катиона Eu²⁺ (КЧ = 6; 6+1; 6+2). С помощью второго правила Полинга в работе была подтверждена корректность выбора координационных полиэдров. Для полиэдров меди, которые претерпевают искажения, был рассчитан показатель искажения τ_4 дескриптор. Параметр τ_4 для EuCeCuSe₃ и EuLaCuSe₃ показывает самые низкие значения среди всех сравниваемых четверных селенидов. Для всех селенидов Eu*RE*CuSe₃ (*RE* = Pr– Ho, Y) τ_4 дескриптор варьируется от 0.97 до 0.98, что указывает на 10-20% искажения от идеального тетраэдра в сторону треугольно-пирамидальной структуры. Значения τ_4 для остальных селенидов Eu*RE*CuSe₃ (*RE* = Er–Lu, Sc) близко к 1.00, что указывает на почти идеальное тетраэдрическое координационное окружение.

Построена структурная карта соединений ARECuCh₃ (A = Sr, Eu, Ba; RE =La–Lu, Sc, Y; Ch = S, Se, Te) (рис. 6). В структурах соединений EuHoCuSe₃ и $SrHoCuSe_3$ ионы Eu^{2+} и Sr^{2+} имеют разные координационные полиэдры. Соединение SrHoCuSe₃ содержит полиэдр SrSe₆ с наиболее выраженной склонностью включенных атомов к образованию ионной связи и имеющий локальную симметрию 43m (высокосимметричная координация), а EuHoCuSe₃ содержит полиэдр EuSe₇ с симметрией *mm2* (менее симметричная координация), в котором склонность к образованию ионной связи выражена в меньшей степени. При уменьшении ионного радиуса лантаноида rRE^{3+} в ARECuSe₃ образование высокосимметричной координации A^{2+} происходит раньше в SrRECuSe₃, чем в EuRECuSe₃. В частности, демаркационная линия смены SrSe₇ (Pnma) на SrSe₆ (*Cmcm*) лежит между SrDyCuSe₃ и SrHoCuSe₃, а изменение КП европия происходит позже, т.е. между EuHoCuSe₃ и EuErCuSe₃. Так, с увеличением степени ионности связи A^{2+} -Ch, а также радиуса rA^{2+} , увеличивается количество соединений, кристаллизующихся в пр. гр. Стст, и ионы A^{2+} раньше становятся шестикоординированными.

Рисунок 6 – Структурные карты Магнуса-Гольдшмидта. Обозначение: цвет соответствует структурному типу (желтый: Ba₂MnS₃, синий: BaLaCuS₃, зеленый: KZrCuS₃, оранжевый: Eu₂CuS₃)

В разделе 3.2 представлены экспериментальные и рассчитанные с помощью DFT метода ИК- и КР-спектры.

У соединений EuTbCuSe₃ и EuTmCuSe₃ экспериментальные и расчетные КРспектры, полученные с использованием функционала PBE0, похожи и имеют полосы в области до 250 см⁻¹ (рис. 7). В этих спектрах наиболее интенсивные полосы наблюдаются около 60 и 180 см⁻¹, каждая из которых соответствует активным модам Ag. В спектре EuTbCuSe₃ присутствует характерная для пр.гр. *Pnma* дополнительная полоса около 15 см⁻¹, также обусловленная Ag-модой (рис. 7). Оба спектра дополнительно демонстрируют полосы от мод B_{2g} и B_{3g}. В экспериментальном спектре EuTmCuSe₃ имеется дополнительная четко выраженная полоса около 45 см⁻¹. Происхождение этой полосы можно отнести к Рамановской активной моде примеси Tm₄Se₃O₄.

Рисунок 7 – Сравнение экспериментальных КР-спектров с теоретическими. Теоретический спектр – черный цвет, экспериментальный спектр – красный цвет

Соединения Eu*RE*CuSe₃ исследованы также методом ИК-спектроскопии. Все указанные селениды оказались прозрачными для ИК-излучения в диапазоне 250–

4000 см⁻¹. В диапазоне 85–250 см⁻¹ присутствуют полосы поглощения в ИКспектрах соединений. Экспериментальные ИК-спектры селенидов имеют пять разных профилей и согласуются с расчетными (рис. 8, 9).

Рисунок 8 – Расчетные (пурпурный) и экспериментальные ИК-спектры EuLaCuSe₃ (черный), EuTbCuSe₃ (красный), EuYCuSe₃ (синий) и EuTmCuSe₃ (зеленый)

Рисунок 9 – Экспериментальный (черный) и расчетный (красный) ИК-спектры EuCeCuSe₃ и расчетный ИК-спектр CeSe₂ (синий)

Количество ИК-активных мод составляет 16 и 27 для пр.гр. *Стст* и *Рпта*, соответственно. Для соединения EuCeCuSe₃ были рассчитаны колебания как основной фазы, так и примесной CeSe₂. Сравнение экспериментального и расчетного ИК-спектров EuCeCuSe₃, а также расчетного ИК-спектра CeSe₂, позволило выявить характерные моды (рис. 9). В частности, наиболее интенсивная мода при 150 см⁻¹ соответствует колебаниям Ce³⁺ и Se²⁻. В целом, моды с волновыми числами >200 см⁻¹ соответствуют колебаниям Cu⁺ и Se²⁻, а моды с меньшими волновыми числами включают колебания всех ионов (рис. 8, 9).

В разделе 3.3 приведена зонная структура, полученная с помощью DFTрасчетов для соединений Eu*RE*CuSe₃ (рис. 10).

Рисунок 10 – Зонная структура и плотности состояний для EuTbCuSe₃ (A) и EuYbCuSe₃ (Б)

В зоне Бриллюэна путь проходит через наиболее высокосимметричные точки ромбической структуры. Для пр.гр. *Рпта* путь строится через Γ –Х–Z–U–Y–S–T– R– Γ с координатами точек (0,0,0), (1/2, 0,0), (0,0,1/2), (1/2,0,1/2), (0,1/2,0), (1/2,1/2,0), (0,1/2,1/2), (1/2,1/2,1/2), (0,0,0), соответственно. Для пр.гр. *Стст* путь строится через Γ –Y–T–Z–S–R– Γ с координатами точек (0,0,0), (1/2,1/2, 0), (1/2,1/2,1/2), (0,0,1/2), (0,1/2,0), (0,1/2,1/2), (0,0,0), соответственно. Согласно расчетам, верх валентной зоны образован в основном состояниями ионов меди и селена, а низ зоны проводимости — состояниями ионов РЗЭ и европия (рис. 10).

Расчеты предсказывают прямую запрещенную зону Г–Г для Eu*RE*CuSe₃ с пр.гр. *Pnma* (СТ Ba₂MnS₃, BaLaCuS₃ и Eu₂CuS₃) и непрямую запрещенную зону Г– Y для Eu*RE*CuSe₃ с пр.гр. *Cmcm* (СТ KZrCuS₃). Теоретические значения ширины запрещенной зоны были определены как разница в энергии между верхней частью валентной зоны и нижней частью зоны проводимости (таблица 2). Экспериментальные значения ширины запрещенной зоны Eu*RE*CuSe₃ были определены с помощью модифицированной функции Кубелки-Мунка (таблица 2).

зоны соединении Еикесизез								
			Рассчи	танные з	начения	Экспериментальные		
Соединение	Πn _E n	СТ	ширин	ны запрен	ценной	значения ширины		
	11p.1p.	CI		зоны (эЕ	8)	запрещенной зоны		
			B3LYP	PBE0	PBE	(9 B)		
EuLaCuSe ₃	Pnma	Ba_2MnS_3	2.63	2.78	1.25	1.54(6)		
EuCeCuSe ₃	Pnma	BaLaCuS ₃	2.21	2.34	0.90	1.36(5)		
Eu ₂ CuSe ₃	Pnma	Eu_2CuS_3	2.38	2.50	1.00	_		
EuPrCuSe ₃	Pnma	Eu_2CuS_3	2.38	2.50	1.00	_		
EuNdCuSe ₃	Pnma	Eu_2CuS_3	2.38	2.51	1.01	_		
EuSmCuSe ₃	Pnma	Eu_2CuS_3	2.42	2.53	1.04	1.95(4)		
EuGdCuSe ₃	Pnma	Eu_2CuS_3	2.45	2.56	1.06	2.01(9)		
EuTbCuSe ₃	Pnma	Eu_2CuS_3	2.48	2.58	1.07	1.97(9)		
EuDyCuSe ₃	Pnma	Eu_2CuS_3	2.49	2.59	1.08	1.87(2)		
EuHoCuSe ₃	Pnma	Eu_2CuS_3	2.51	2.61	1.10	2.05(6)		
EuYCuSe ₃	Pnma	Eu_2CuS_3	_	_	1.04	1.19(2)		
EuErCuSe ₃	Cmcm	KZrCuS ₃	2.52	2.62	1.12	_		
EuTmCuSe ₃	Cmcm	KZrCuS ₃	2.54	2.65	1.13	2.06(6)		
EuYbCuSe ₃	Cmcm	KZrCuS ₃	2.56	2.67	1.14	1.38(9)		
EuLuCuSe ₃	Cmcm	KZrCuS ₃	2.59	2.69	1.15	2.09(4)		

Таблица 2 – Рассчитанные и экспериментальные значения ширины запрещенной зоны соединений Eu*RE*CuSe₃

В разделе 3.4 представлены данные о магнитных свойствах Eu*RE*CuSe₃. Поскольку изучаемые сложные селениды содержат в себе магнитные ионы, были проведены экспериментальные исследования на СКВИД-магнитометре MPMS-3, а также расчеты с целью определения их теоретических магнитных характеристик.

Зависимости магнитных моментов от внешнего поля у всех образцов Eu*RE*CuSe₃ при комнатной температуре имеют линейный характер, соответствующий закону Кюри для парамагнетиков, и отличаются только наклоном линии (рис. 11). На основе полученных данных были вычислены молярные магнитные восприимчивости, магнитные моменты в расчете на формульную единицу, а также константы Кюри (таблицы 3-4).

Рисунок 11 – Магнитные моменты образцов EuRECuSe₃ при температуре 300 К

	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Но	Y
Экс. µ _{296К} (µ _В)	7.86	7.98	8.28	8.46	7.87	10.86	12.90	12.94	12.95	7.85
Экс. µ _{15К} (µ _В)	7.50	7.40	8.23	8.46	_	_	10.70	11.00	12.30	10.90
Расч. <i>µ</i> (µв)	7.94	8.33	8.70	8.70	7.98	11.22	12.55	13.28	13.25	7.94
Эксп. С _{296К} (К м ³ кмоль ⁻¹)	0.097	0.100	0.108	0.113	0.097	0.185	0.262	0.263	0.263	0.097
Эксп. С _{15К} (К м ³ кмоль ⁻¹)	0.090	0.086	0.106	0.112	_	_	0.190	0.190	0.24	0.190
Расч. <i>С</i> (К м ³ кмоль ⁻¹)	0.099	0.109	0.119	0.120	0.100	0.198	0.248	0.277	0.276	0.099
Тип	Ферро	Ферро	Ферро	Ферро	_	_	Ферри	Ферри	Ферри	Ферро
$\theta_{\rm p}\left({\rm K} ight)$	0.2	1.7	0.5	0.8	_	_	-1.3	-0.7	-0.4	3.3

Таблица 3 – Магнитные характеристики соединений EuRECuSe₃ (пр.гр. Pnma)

Таблица 4 – Магнитные характеристики соединений EuRECuSe₃ (пр. гр. *Стст*)

	Tm	Yb	Lu	Sc
Экс. µ _{296К} (µ _В)	10.99	9.00	8.38	7.96
Экс. µ15к (µв)	12.00	8.80	14.00	7.89
Расч. <i>µ</i> (µ _В)	10.96	9.14	7.94	7.94
Эксп. С _{296К} (К м ³ кмоль ⁻¹)	0.190	0.127	0.110	0.099
Эксп. C_{15K} (К м ³ кмоль ⁻¹)	0.220	0.120	0.320	0.098
Расч. <i>С</i> (К м ³ кмоль ⁻¹)	0.189	0.131	0.099	0.099
Тип	Ферри	Ферро	Ферро	Ферро
$ heta_{ m p}\left({ m K} ight)$	1.1	4.5	3.1	6.0

Рассмотрены виды зависимостей удельной намагниченности и обратной магнитной восприимчивости от молярной температуры для deppo-И ферримагнетиков (рис. 12). Анализ данных зависимостей свидетельствует о том, что соединения EuLaCuSe₃, EuCeCuSe₃, EuPrCuSe₃, EuNdCuSe₃, EuYCuSe₃, EuYbCuSe₃, EuLuCuSe₃ и EuScCuSe₃ обладают парамагнитной температурой Кюри θ_р от 0.2 до 6 К (таблицы 3, 4). Ниже этих температур образцы, скорее всего, будут ферромагнитными. Это предположение подтверждается наличием в соединениях одного типа магнитных ионов Eu²⁺, совпадением данных измерений FC (охлажденный в магнитном поле) и ZFC (охлажденный в нулевом магнитном поле), а также линейным характером зависимости обратной восприимчивости от температуры вплоть до самых низких температур.

Рисунок 12 – Зависимости удельной намагниченности и обратной молярной магнитной восприимчивости от температуры для ферримагнетиков (EuHoCuSe₃, EuTbCuSe₃) и ферромагнетика (EuYbCuSe₃)

обратной Зависимости молярной магнитной восприимчивости для EuGdCuSe₃, EuTbCuSe₃, EuDyCuSe₃, EuHoCuSe₃, EuErCuSe₃ и EuTmCuSe₃ при понижении температуры демонстрируют характерный для ферримагнетиков резкий спад линейной зависимости. Намагниченность EuHoCuSe₃ ниже точки Нееля выглядит существенно иначе и имеет отрицательное значение при температурах от 4.2 до 4.8 К. Аналогичные температурные зависимости обратной восприимчивости были получены для (Tm_{0.8}Mn_{0.2})MnO₃ [5]. Установлено, что отрицательная намагниченность определяется по механизму отрицательной обменной связи между ферримагнитными подрешётками. Скорее всего. EuHoCuSe₃ обладает сходными свойствами и относится к ферримагнетикам N-типа по Неелю.

На основе полученных данных была построена карта с магнитными переходами для соединений Eu*RE*CuCh₃ (рис. 13).

Рисунок 13 – Карта с ферро- и ферримагнитными переходами соединений Eu*RE*CuCh₃. Красный цвет – ферромагнитный переход; зеленый цвет – ферримагнитный переход

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. разработан способ синтеза поликристаллических образцов Впервые соединений Eu*RE*CuSe₃ (RE = La, Ce, Sm, Gd–Lu) в потоке селенидирующих газов (патент № RU 2783926). Выход соединений составил от 95.1 % до 100 %. восстановительное селенидирование многокомпонентной Установлено. что оксидной смеси, полученной термолизом сокристаллизованных нитратов металлов, уменьшает температурно-временные параметры синтеза четверных селенидов. Оптимизированы временные и температурные режимы синтеза монокристальных образцов $EuRECuSe_3$ (RE = Pr, Nd, Sc) методом галогенидного флюса.

2. Впервые определена кристаллическая структура соединений EuRECuSe₃ (RE = La-Nd, Sm, Gd-Ho, Tm-Lu, Sc, Y). Соединения кристаллизуются в двух пр.гр. Рпта и Стст и четырех структурных типах ромбической сингонии. Соединение EuLaCuSe₃ принадлежит к CT Ba₂MnS₃, EuCeCuSe₃ – к CT BaLaCuS₃. Соединения Eu*RE*CuSe₃ (RE = Pr-Ho, Y) изоструктурны Eu₂CuS₃, a Eu*RE*CuSe₃ (RE = Tm-Lu, Sc) - KZrCuS₃. Установлено, что в ряду изоструктурных соединений EuRECuSe₃ структурных наблюдается уменьшение параметров, что коррелирует уменьшением ионного радиуса RE³⁺, и формирование наиболее симметричной структуры. Впервые установленные структурные параметры 14 новых селенидов Eu*RE*CuSe₃ депонированы в Кембриджском центре кристаллографических данных. 3. Установлены с помощью DFT-расчетов наиболее вероятные пр.гр., CT, структурные характеристики, фононные спектры соединений EuRECuSe₃. С привлечением ab initio расчетов интерпретированы экспериментальные ИК- и КРспектры селенидов.

4. Установлено, что экспериментальные значения ширины запрещенной зоны соединений Eu*RE*CuSe₃ лежат в интервале 1.19-2.09 эВ. Данные значения сопоставлялись с теоретически рассчитанными с помощью метода DFT с функционалами B3LYP, PBE0, PBE. Расчет зонной структуры позволил установить

наличие прямой запрещенной зоны у соединений $EuRECuSe_3$ (RE = La-Nd, Sm, Gd-Ho, Y) с пр.гр. *Рпта* и непрямой запрещенной зоны у $EuRECuSe_3$ (RE = Tm-Lu, Sc) с пр.гр. *Стст*.

Установлено, что все соединения EuRECuSe₃ от температуры Кюри до 300 К 5. свойства. парамагнитные Анализ зависимостей удельной проявляют намагниченности обратной молярной магнитной И восприимчивости ОТ температуры позволил установить наличие ферро- и ферримагнитных переходов в ряду четверных селенидов европия. Ферримагнитное упорядочение у EuTbCuSe₃, EuDyCuSe₃, EuGdCuSe₃ и EuTmCuSe₃ устанавливается при 4.5-6.3 К. Соединение EuHoCuSe₃ является ферримагнетиком N-типа по Неелю и проявляет эффект отрицательного намагничивания при температурах ниже 4.8 К. Для соединений EuYCuSe₃, EuYbCuSe₃, EuLaCuSe₃, EuCeCuSe₃, EuLuCuSe₃, EuScCuSe₃ установлены переходы в ферромагнитное состояние при температурах около 4 К.

Цитируемая литература:

1. Koscielski, K.D. The structural chemistry of quaternary chalcogenides of the type AMM'Q₃ / K.D. Koscielski, J. Ibers // Z. Anorg. Allg. Chem. - 2012. - V. 638(15). - P. 2585-2593.

2. Pal, K. Accelerated discovery of a large family of quaternary chalcogenides with very low lattice thermal conductivity / K. Pal, Y. Xia, J. He, Y. Luo, M.G. Kanatzidis, C. Wolverton // NPJ Comput. Mater. - 2021. - V. 7. - Article number: 82.

3. Shahid, O. Synthesis, crystal structure, DFT, and photovoltaic studies of BaCeCuS₃ / O. Shahid, S. Yadav, D. Maity, M. Deepa, M.K. Niranjan, J. Prakash // New J. Chem. - 2023. - V. 47. - P. 5378-5389.

4. Gladisch, F.C. Eu₂CuSe₃ revisited by means of experimental and quantumchemical techniques / F.C. Gladisch, S. Maier, S. Steinberg // Eur. J. Inorg. Chem. - 2021. - V. 2021(15). - P. 1510-1517.

5. Dönni, A. Origin of negative magnetization phenomena in $(Tm_{1-x}Mn_x)MnO_3$: a neutron diffraction study / A. Dönni, V.Y. Pomjakushin, L. Zhang, K. Yamaura, A.A. Belik // Phys. Rev. B. - 2020. - V. 101. - Article number: 54442.

Основные результаты диссертации опубликованы в следующих работах:

Статьи:

1. Grigoriev, M.V. Quaternary selenides EuLnCuSe₃: synthesis, structures, properties and in silico studies / **M.V. Grigoriev**, L.A. Solovyov, A.V. Ruseikina, A.S. Aleksandrovsky, V.A. Chernyshev, D.A. Velikanov, A.A. Garmonov, M.S. Molokeev, A.S. Oreshonkov, N.P. Shestakov, A.V. Matigorov, S.S. Volkova, E.A. Ostapchuk, A.V. Kertman, Th. Schleid, D.A. Safin // Int. J. Mol. Sci. - 2022. - V. 23(3). - Art. 1503 (P. 1-24).

2. Grigoriev, M.V. Elucidating elusive quaternary selenide EuCeCuSe₃: synthesis, crystal structure, properties and theoretical studies / **M.V. Grigoriev**, A.V. Ruseikina, M.S. Molokeev, V.A. Chernyshev, A.S. Aleksandrovsky, A.S. Krylov, S.N. Krylova,

N.P. Shestakov, D.A. Velikanov, A.A. Garmonov, A.V. Matigorov, E.A. Ostapchuk, Th. Schleid, D.A. Safin // J. Rare Earths. - 2024. - V. 42. - P. 163-171.

3. Grigoriev, M.V. Single crystals of EuScCuSe₃: synthesis, experimental and DFT investigations / **M.V. Grigoriev**, A.V. Ruseikina, V.A. Chernyshev, A.S. Oreshonkov, A.A. Garmonov, M.S. Molokeev, R.J.C. Locke, A.V. Elyshev, Th. Schleid // Materials. - 2023. - V. 16(4). - Art. 1555 (P. 1-12).

Патенты:

1. Патент РФ на изобретение № RU 2783926 «Способ получения селенидов (Sr,Eu)LnCuSe₃ (Ln = La, Nd, Sm, Gd-Lu, Sc, Y) ромбической сингонии». Авторы: Русейкина А.В., **Григорьев М.В.**, Соловьев Л.А., Молокеев М.С., Матигоров А.В., Третьяков Н.Ю., Остапчук Е.А., Елышев А.В. Патентообладатель: **Григорьев М.В.**

Тезисы докладов:

1. **Григорьев М.В.**, Молокеев М.С., Русейкина А.В., Киселев К.Ю. Структурные параметры соединения EuTmCuSe₃ // X Международная школа «Физическое материаловедение» (ШФМ-2021), посвященная десятилетию создания лаборатории «Физика прочности и интеллектуальные диагностические системы». Сборник тезисов докладов. - г. Тольятти, 13-17 сентября 2021. - С. 80-81.

2. **Григорьев М.В.**, Молокеев М.С., Русейкина А.В., Чернышев В.А., Киселев К.Ю. Кристаллическая структура и ширина запрещенной зоны EuTbCuSe₃ // Перспективные материалы и технологии: материалы международного симпозиума. Сборник тезисов докладов. - г. Минск, 23-27 августа 2021. - С. 288.

3. Григорьев М.В., Чернышев В.А., Русейкина А.В. Структура и свойства селенидов редкоземельных элементов EuLnCuSe₃: ab initio расчет // Х Международная «Физическое (ШФМ-2021), школа материаловедение» посвященная десятилетию создания лаборатории «Физика прочности И интеллектуальные диагностические системы». Сборник тезисов докладов. - г. Тольятти, 13-17 сентября 2021. - С. 81-83.

4. Соловьев Л.А., **Григорьев М.В.**, Остапчук Е.А., Русейкина А.В. Кристаллическая структура новых селенидов EuLnCuSe₃ (Ln = Yb, Lu) // Редкие металлы и материалы на их основе: технологии, свойства и применение. РедМет-2021 («Сажинские чтения»). Сборник тезисов докладов. - г. Москва, 9-10 декабря 2021. - С. 175.

5. **Григорьев М.В.**, Остапчук Е.А., Русейкина А.В. Кристаллическая структура EuGdCuSe₃ // Редкие металлы и материалы на их основе: технологии, свойства и применение. РедМет-2021 («Сажинские чтения). Сборник тезисов докладов. - г. Москва, 9-10 декабря 2021. - С. 194.

6. Соловьев Л.А., **Григорьев М.В.**, Чернышев В.А., Русейкина А.В., Кара Д.М. Кристаллическая структура и ширина запрещенной зоны селенида EuLaCuSe₃ // Девятая международная конференция «Кристаллофизика и деформационное поведение перспективных материалов». Сборник тезисов докладов. - г. Москва, 22-26 ноября 2021. - С. 159.

7. **Григорьев М.В.**, Русейкина А.В., Кара Д.М. Термические свойства новых ромбических селенидов EuLnCuSe₃ (Ln = Gd, Tb, Dy, Ho, Y, Er, Tm) // Девятая международная конференция «Кристаллофизика и деформационное поведение перспективных материалов». Сборник тезисов докладов. - г. Москва, 22-26 ноября 2021. - С. 59.

8. Соловьев Л.А., **Григорьев М.В.**, Русейкина А.В. Кристаллическая структура ромбических селенидов EuLnCuSe₃ (Ln=Ho, Y) // Девятая международная конференция «Кристаллофизика и деформационное поведение перспективных материалов». Сборник тезисов докладов. - г. Москва, 22-26 ноября 2021. - С. 157.

9. Соловьев Л.А., **Григорьев М.В.**, Русейкина А.В. Применение метода минимизации производной разности для уточнения кристаллической EuDyCuSe₃ // Девятая международная конференция «Кристаллофизика и деформационное поведение перспективных материалов». Сборник тезисов докладов. - г. Москва, 22-26 ноября 2021. - С. 158.

10. **Grigoriev M.V.**, Locke R., Ruseikina A.V., Schleid Th. Crystal structure of EuScCuSe₃ // Materials science of the future: research, development, scientific training (MSF' 2022). Abstracts. - Nizhniy Novgorod, April 05-07, 2022. - P. 66.

Григорьев **M.B.**, Гармонов A.A., Русейкина A.B., Th. 11. Schleid Ферромагнитный переход в EuScCuSe₃ // Неорганические соединения И материалы (ICFM-2022). Сборник тезисов функциональные докладов. -Г. Новосибирск, 27-30 сентября 2022. - С. 121.

12. **Григорьев М.В.**, Гармонов А.А., Великанов Д.А., Русейкина А.В. О магнитных свойствах соединений EuSmCuSe₃ и EuGdCuSe₃ // Неорганические соединения и функциональные материалы (ICFM-2022). Сборник тезисов докладов. - г. Новосибирск, 27-30 сентября 2022. - С. 122.

13. Aleksandrovsky A.S., **Grigoriev M.V.**, Elyshev A.V., Ostapchuk E.A., Ruseikina A.V. The direct band gap for EuCeCuSe₃ and regularities in EuLnCuSe₃ sequence // The Sixth International Scientific Conference "Advances in Synthesis and Complexing". Abstracts. - Moscow, September 26-30, 2022. - P. 326.

14. **Григорьев М.В.**, Гармонов А.А., Русейкина А.В., Schleid Th. Низкотемпературные ферромагнетики EuPrCuSe₃ и EuNdCuSe₃ // Редкие металлы и материалы на их основе: технологии, свойства и применение. РедМет-2022 («Сажинские чтения»). Сборник тезисов докладов. - г. Москва, 23-25 ноября 2022. - С. 155-156.

15. Чернышев В.А., **Григорьев М.В.**, Остапчук Е.В., Русейкина А.В. Спектроскопия комбинационного рассеяния EuCeCuSe₃ // «Химия твердого тела и функциональные материалы – 2022» и XIV симпозиум «Термодинамика и материаловедение». Сборник тезисов докладов. - г. Екатеринбург, 10-13 октября 2022. - С. 382-384.

16. **Григорьев М.В.**, Чернышев В.А., Русейкина А.В., Шинкевич В.О. Кристаллическая и зонная структуры соединения EuTmCuSe₃ // Перспективные материалы и технологии. - г. Минск, 23-27 августа 2021. - С. 292-293.

Благодарности

Автор диссертации выражает благодарность научному руководителю к.х.н. Русейкиной Анне Валерьевне за постановку задачи и помощь в обсуждении результатов. За помощь в проведении отдельных экспериментов и обсуждении результатов автор благодарит Prof. Dr. Th. Schleid, к.х.н. Сафина Д.А., к.т.н. Молокеева М.С., к.т.н. Орешонкова А.С., к.ф.-м.н. Гармонова А.А., к.ф.-м.н. Чернышева В.А., д.х.н. Кертмана А.В., к.ф.-м.н. Александровского А.С., д.ф.-м.н. Великанова Д.А., к.ф.-м.н. Крылова А.С., к.ф.-м.н. Крылову С.Н., к.х.н. Елышева А.В. Отдельную благодарность диссертант выражает «Лаборатории теории и оптимизации химических И технологических процессов» ТюмГУ 3a предоставление материальной базы для выполнения диссертационной работы.